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�e central importance of large scale eigenvalue problems in scienti�c computation necessitates the devel-
opment massively parallel algorithms for their solution. Recent advances in dense numerical linear algebra
have enabled the routine treatment of eigenvalue problems with dimensions on the order of hundreds of
thousands on the world’s largest supercomputers. In cases where dense treatments are not feasible, Krylov
subspace methods o�er an a�ractive alternative due to the fact that they do not require storage of the prob-
lem matrices. However, demonstration of scalability of either of these classes of eigenvalue algorithms on
computing architectures capable of expressing excessive parallelism is non-trivial due to communication
requirements and serial bo�lenecks, respectively. In this work, we introduce the SISLICE method: a parallel
shi�-invert algorithm for the solution of the symmetric self-consistent �eld (SCF) eigenvalue problem. �e
SISLICE method drastically reduces the communication requirement of current parallel shi�-invert eigenvalue
algorithms through various shi� selection and migration techniques based on density of states estimation
and k-means clustering, respectively. �is work demonstrates the robustness and parallel performance of the
SISLICE method on a representative set of SCF eigenvalue problems and outlines research directions which
will be explored in future work.
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1 INTRODUCTION
Large-scale symmetric eigenvalue problems arise in many types of scienti�c computation (Yang
2005). In the case of electronic structure calculations based on the Hartree–Fock approximation or
Kohn-Sham density functional theory, a large symmetric nonlinear eigenvalue problem must be
iteratively solved through what is known as the self-consistent �eld (SCF) procedure (Szabo and
Ostlund 2012). Typical methods to solve the so-called SCF eigenvalue problem require the partial
diagonalization of a sequence of matrix pencils where each pencil of the sequence is generated
using a subset of the eigenvectors of the previous pencil. �e SCF problem is considered solved
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0:2 David B. Williams–Young, Paul G. Beckman, and Chao Yang

when convergence of the sequence is achieved, i.e. the change in the matrix pencil (or equivalently,
the desired eigenvectors of said pencil) between two subsequent iterations of the SCF procedure
falls below a speci�ed threshold. �e repeated diagonalization required by the SCF procedure is
o�en the computational bo�leneck in large scale electronic structure calculations (Banerjee et al.
2018; Jay et al. 1999; Shepard 1993), especially in cases where a large number of computational
resources are available. As such, methods must be developed to e�ciently solve this class of
nonlinear eigenvalue problem on modern, massively-parallel computing architectures.

One of the hallmarks of the SCF procedure is that the desired eigenpairs need not be computed
to full accuracy before convergence is reached. However, as the sequence progresses, an increasing
level of accuracy in the desired eigenpairs is needed to ensure convergence to the proper SCF
solution. Although the spectrum of the matrix pencils may change quite a bit in the �rst few
iterations of the SCF procedure, this change becomes progressively smaller as convergence is
reached. �is feature makes the design and implementation of algorithms for solving the SCF
eigenvalue problem somewhat di�erent from traditional algorithms for solving an eigenvalue
problem of a �xed matrix.

In this work, we consider the partial diagonalization of ne eigenpairs of a converging sequence
of symmetric matrix pencils, (A(i),B), of dimension N ,

A(i)X (i) = BX (i)Λ(i), (1)
where i ∈ Z+ is a sequence index, A(i) ∈ RN×N is symmetric and B ∈ RN×N is symmetric positive
de�nite (SPD). X (i) ∈ RN×ne and Λ(i) ∈ Rne×ne are the eigenvectors and the diagonal matrix
of eigenvalues corresponding to the desired eigenpairs of (A(i),B), respectively. We denote the
eigenvalues as Λ(i)pq = δpqλ

(i)
p and will refer to the increment of i as an SCF iteration. Further, we

will make the following assumptions about the sequence of matrix pencils:
• We assume that A(i+1) depends in some (possibly non-linear) way on (X (i),Λ(i)).
• As the SCF iterations progress, we assume A(i) converges toward a matrix A, but are not

concerned with how this convergence is achieved other than the requirement that the
convergence is not chaotic and the desired eigenpairs of (A(i),B) must be computed to
progressively higher accuracy as this convergence occurs.
• We assume that the desired eigenpairs of each matrix pencil in the sequence are contiguous

within the desired spectral region bounded by λ(i)min and λ(i)max.
In cases where ne is relatively small (O(< 1, 000)) compared to N , or when (A(i),B) is sparse

or structured, iterative algorithms such as the implicitly restarted Lanczos algorithm (Lehoucq
et al. 1998), the Jacobi-Davidson algorithm (Sleijpen and Van der Vorst 2000; Stathopoulos and
McCombs 2007), and the locally optimal block preconditioned conjugate gradient (LOBPCG)
algorithm (Knyazev 2001) are o�en very e�ective. If the matrix vector multiplication, y ← A(i)x ,
can be implemented e�ciently on a large number of computational cores, one may obtain the
desired eigenpairs of matrices with much larger dimensions (e.g., millions or even billions) in a
ma�er of minutes if not less.

In cases where ne is a considerable fraction of N or when ne is larger than thousands or tens of
thousands, iterative algorithms become less e�cient partly due to the need to solve a projected
dense eigenvalue problem as a part of the Rayleigh-Ritz procedure via some dense eigensolver.
Dense eigensolvers such as those available in the LAPACK (Anderson et al. 1999), ScaLAPACK
(Blackford et al. 1997) and ELPA (Marek et al. 2014) libraries are also o�en used to perform a full
diagonalization of each (A(i),B). Recent advances in dense numerical linear algebra have made
it possible to perform full diagonalizations for matrices of dimension O(10, 000) −O(100, 000) in
a few wall clock minutes using thousands to tens of thousands computational cores. However,
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Shi� Selection for Parallel Shi�-Invert Spectrum Slicing 0:3

making further improvements when even more computational resources (e.g. GPU accelerators)
become available appears to be di�cult due to the communication requirement of existing parallel
algorithms.

In this report, we present the SISLICE method: a parallel symmetric eigensolver based on shi�-
invert spectrum slicing for the solution of the SCF eigenvalue problem described in Eq. (1). In
spectrum slicing methods, the eigenspectrum of the problem of interest is divided into several
subintervals (spectral slices) such that the eigenvalues within each slice may be computed simul-
taneously. �is approach eliminates the Rayleigh-Ritz bo�leneck and increases the potential for
concurrency in a parallel implementation. �e notion of spectrum slicing is well documented in
the literature for many classes of eigenvalue problems (Bai et al. 2000; Saad 2011). While the basic
idea behind spectrum slicing is relatively simple, its practical implementation on a large number of
computational resources is non-trivial.

One of the key practical considerations in the development of a spectral slicing method is the
choice of method for computing eigenvalues within each independent spectral slice. For this
purposed, the SISLICE method employs the shi�-invert subspace iteration. Despite its simplicity,
the shi�-invert subspace iteration is particularly a�ractive because the convergence of the method
is su�ciently fast for approximate eigenpairs in the spectral neighborhood of a target shi�. Further,
it is robust and relatively easy to implement.

�e primary practical issue of spectral slicing addressed in this work is the development of
a scheme to partition the spectrum into spectral slices that contain an appropriate number of
eigenvalues without knowing how the eigenvalues are distributed in advance. In general, the
spectrum may be partitioned by the selection of the target shi�s used in the shi�-invert subspace
iteration. In early work by Grimes, et al. (Grimes et al. 1994), this shi� selection was performed
in a sequential manner to balance the cost of the sparse matrix factorizations and triangular back
substitutions required to solve the sequence of shi�ed linear systems. Given an initial shi�, this
sequential spectrum slicing process uses a block shi�-invert Lanczos iteration to compute one
spectral slice at a time. As the shi�-invert Lanczos iterations progress, convergence of the Ritz
pairs is monitored and a new shi� is selected when convergence is deemed to have stagnated. A
similar technique was used in the development of the SIPs method of Zhang, et al. (Zhang et al.
2007). �e SIPs method is a parallel spectrum slicing method which generates spectral slices and
target shi�s in a dynamically scheduled parallel framework where the number of required spectral
slices are assumed to be much larger than the number of processors or process groups available to
solve the eigenvalue problem. �is parallel slicing strategy was also adopted for density functional
calculations in (Campos and Roman 2012). �e selection of shi�s was not discussed in (Aktulga
et al. 2014) where a multiple shi�-invert Lanczos method was compared with a contour integral
based eigensolver called FEAST (Polizzi 2008).

�e shi� selection strategy used in SISLICE is designed for parallel spectrum slicing to be
performed on computing platforms with extensive computational resources (i.e. in terms of node
and processor counts). To do this, we select all of the target shi�s which partition a desired part of
the spectrum at once, such that the shi�-invert subspace iterations associated with di�erent shi�s
or spectral slices may be carried out simultaneously. A key feature of this shi� selection strategy is
the use of spectral density estimation (also known as the density of states, or DOS) to approximate
the distribution of eigenvalues. In this work, this DOS estimation is obtained from a Lanczos-based
procedure described in (Lin et al. 2016) at the beginning of the slicing procedure as is described in
(Li et al. 2016). Given a DOS estimation, we are able to place more shi�s in spectral regions which
have many tightly spaced eigenvalues that are not well separated from the rest of the spectrum, and
fewer shi�s in regions that have isolated clusters with small radii. �rough this procedure, we may
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σ1 σ2 σns−1 σns

Slice 1 Slice 2 Slice ns Slice ns + 1

Fig. 1. Partitioning the spectrum of interest into several slices or subintervals which may be computed
simultaneously.

ensure that the shi�-invert subspace iterations are able to converge rapidly (in a few iterations)
for all spectral slices. Further, we introduce an eigenvalue clustering strategy which allows us
to re�ne shi� placement and track eigenvalue migration throughout the SCF procedure as A(i)
converges to a �xed matrix. Because the matrix sequence A(i) can change signi�cantly in early SCF
iterations when it is far from converged, some of the selected shi�s resulting from the analysis of
approximate eigenvalues in the previous SCF iteration may not be optimal. Consequently, some of
these shi�s may need to be deleted and new shi�s may need to be inserted to ensure no eigenvalue
is missed and all eigenvalues within the spectral region of interest can be computed e�ciently by
the shi�-invert subspace iteration. We will discuss how this can be implemented in conjunction
with a spectral slice validation scheme.

�e SISLICE method is designed to minimize communication overhead and thus improve parallel
scalability at the expense of performing more local calculations. �is strategy takes into account the
recent trend in high performance computing platforms on which �oating point operations become
cheaper due to the emergence of multicore processors and accelerators while data movement
remains costly. In SISLICE, we compute more approximate eigenpairs than the number eigenvalues
within a spectral slice. �is redundancy does not necessarily increase time to solution if there is
an abundance of computational resources which can accommodate such redundancy. However, it
makes the validation of eigenpairs easier and more e�cient to implement. In particular, we will
show that in SISLICE it is not necessary to check mutual orthogonality of approximate eigenvectors
obtained in di�erent spectral slices. As a result, our validation scheme does not require moving
vectors across di�erent nodes or processor groups, which is o�en costly. �is key feature enables
SISLICE to scale to more than tens of thousands of processors.

�is paper is organized as follows. Section 2 brie�y reviews the salient aspects of shi�-invert
spectrum slicing and the spectral slice validation scheme used by the SISLICE method. Sections 3
and 4 examine the practical issues of spectrum slicing, such as shi� selection, parallel load balance,
etc., and how the SISLICE method aims to resolve them. Section 5 provides a series of numerical
experiments which exhibit the performance and robustness of the proposed SISLICE method, and
some additional improvements to the SISLICE method which we will implement in the future are
discussed in Sec. 6.

2 SHIFT-INVERT SPECTRUM SLICING
Algorithm 1 depicts the general framework with which the SISLICE method will perform the
sequence of pencil diagonalizations required for the SCF eigenvalue problem. At each SCF iteration,
the general strategy adopted by the SISLICE method is to partition the spectral region of interest
of a matrix pencil (A(i),B) into subintervals which may be treated independently. �ese spectral
subintervals will be referred to as spectral slices in this work. As the SCF iterations progress, the
span of the desired eigenvectors between subsequent iterations approaches invariance, thus the
approximate eigenvectors obtained from a particular SCF iteration may be used as a best guess
approximation (initial guess) for the subsequent iteration. Because the considered eigenvalue
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Algorithm 1: Shi�-invert spectrum slicing for computing ne eigenpairs of a sequence of matrix
pencils (A(i),B) as they converge to a pencil (A,B).

Input : (A(0),B), number of desired eigenpairs ne , number of slices K
Output :X ∈ RN×ne and diagonal matrix Λ ∈ Rne×ne which describe the desired ne eigenpairs

of the converged (A,B).

for i = 0, 1, 2, . . . do
1 Partition the spectral region of interest for (A(i),B) into K slices by selecting ns = K − 1

spectral shi�s;
2 Choose starting guesses for eigenvectors within each slice;
3 Use shi�-invert subspace iteration to obtain approximate eigenpairs within each slice;
4 Validate the computed eigenvalues→ (X ,Λ);
5 Compute the matrix A(i+1) using (X ,Λ);

if A(i+1) converged then
6 return (X ,Λ);

end
end

problem is symmetric, its real-valued eigenspectrum may be partitioned into ns + 1 spectral slices
by selecting a set of points {σj | σj ∈ R}nsj=1 as shown in Fig. 1. A particular σj will be referred to as a
spectral shi�, and each spectral slice will be bounded on either side by either a spectral shi� or λmin
(λmax) for slice 1 (ns + 1), respectively. As such, the problem of computing the eigenpairs within
a particular spectral slice amounts to computing approximate eigenpairs in the neighborhood
of the shi�s which form its boundary and validating those eigenpairs against some well de�ned
criteria. We note here that the SISLICE method treats ns as a static quantity throughout the SCF
procedure. �is constraint is adopted primarily for considerations regarding load balance in a
distributed parallel computing environment (see Sec. 4 for details). In this work, we use the shi�-
invert subspace iteration to compute eigenpairs near a spectral shi�. �e validation of eigenpairs
takes into account the shi�ed matrix inertia as well as the accuracy of the computed eigenpairs.
Speci�c details regarding the selection of spectral shi�s are given in Sec. 3. In this section, we
review the salient aspects of the shi�-invert subspace iteration and slice validation scheme used by
the SISLICE method given a set of spectral shi�s.

We should note that the algorithm outlined in Alg. 1 can be used to compute desired eigenpairs
of a �xed matrix pencil also. When the matrix pencil (A,B) is �xed, we obviously do not need to
perform the update in Step 5, however; we may improve the e�ciency of the shi�-invert subspace
iteration by repartitioning the spectral region of interest (Step 1) using previously computed
eigenvalue approximations as the reference. �e application of Alg. 1 to a �xed eigenvalue problem
is particularly a�ractive for large, sparse matrix pencils with N > O(100, 000) where sparse matrix
factorizations are possible, but direct eigenvalue decomposition is impractical on currently available
computer hardware.

2.1 The Shi�–Invert Subspace Iteration
In this subsection, we examine the salient aspects of the shi�-invert subspace iteration as it pertains
to a particular SCF iteration, i.e. the partial diagonalization of a single element of the SCF sequence.

ACM Transactions on Mathematical So�ware, Vol. 0, No. 0, Article 0. Publication date: March 20xx.



0:6 David B. Williams–Young, Paul G. Beckman, and Chao Yang

Algorithm 2: �e Shi�-Invert Subspace Iteration: SISubIt(A,B,V(0),σ ,m)

Input :Symmetric matrices A,B ∈ RN×N with B being SPD, a target shi� σ ∈ R, the number
of eigenpairs to be computed k , an initial guess of the eigenvectorsV(0) ∈ RN×k , and a
number of subspace iterations M

Output : (X ,Λ) which approximates k eigenpairs of (A,B) in the spectral neighborhood of σ .

1 V ← CholeskyQR(V(0),B);
2 (L,D) ← LDLT factorization of A − σB;
for m = 1,2,…,M do

3 V(m) ← L−TD−1L−1BV(m−1);
4 V(m) ← CholeskyQR(V(m),B);
end

5 return (X ,Λ) ← RayleighRitz(A,B,V(M ));

For convenience, we denote this particular pencil as (A,B). Approximate eigenpairs of (A,B)
corresponding to eigenvalues in the neighborhood of a shi�, σ , may be obtained through the
shi�-invert subspace iteration (Bai et al. 2000; Saad 2011). For the purposes of this work, we assume
that σ is distinct from any eigenvalue of (A,B). �e shi�-invert subspace iteration may be viewed
as the power iteration applied to the shi�-invert transformed system given by,

ξ (A,B,σ ) = (A − σB)−1B. (2)

ξ (A,B,σ ) may easily be shown to be self-adjoint with respect to the B-inner product, i.e.

〈x , ξ (A,B,σ )y〉B = xTB(A − σB)−1By = 〈ξ (A,B,σ )x ,y〉B , ∀x ,y ∈ RN . (3)

Under ξ , a particular eigenpair (x , λ) of (A,B) admits the following map,

Ax = λBx 7→ ξ (A,B,σ )x = µBx , (4)

where
µ =

1
λ − σ . (5)

As λ approaches σ , the magnitude of µ rapidly grows larger. �us, eigenvalues of (A,B) in the
spectral neighborhood of σ are mapped to the extremal eigenvalues of (ξ (A,B,σ ),B) while leaving
their corresponding eigenvectors unchanged. As such, application of the power iteration to a k
dimensional subspace V ∈ RN×k ,

V(m+1) = orth(ξ (A,B,σ )V(m),B), (6)

converges rapidly towards the invariant subspace corresponding to the k largest eigenvalues of
(ξ (A,B,σ ),B), or equivalently, those corresponding to the k eigenvalues of (A,B) closest to σ . Here,
m ∈ Z+ is the shi�-invert subspace iteration index and V is denoted with a subscript to distinguish
itself from the SCF iteration of Eq. (1). One possible implementation of Eq. (6) is given in Alg. 2.

�ere are a few alternatives to the shi�-invert subspace iteration which include:
• �e shi�-invert Lanczos method. �is method requires solving a sequence of linear systems

of equations with a single right-hand side. Although this method has a faster convergence
rate than the shi�-invert subspace iteration, the dependency among these linear systems
makes it di�cult to achieve good parallel scalability.
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• �e Davidson or LOBPCG methods applied to (A − σB)−1B. �is method also has a faster
convergence rate than the shi�-invert subspace iteration, but it is more di�cult to imple-
ment in a stable manner due to the numerical rank de�ciency of the basis of the search
space from which approximations of the desired eigenpairs are extracted (Duersch et al.
2018).
• Contour integral based methods (Polizzi 2008; Sakurai and Sugiura 2003; Tang and Polizzi

2014). �ese methods requires solving a number of complex-shi�ed linear systems of
equations. �e parallelization requires taking into account the partition of the spectrum and
the number of quadrature points used to approximate the contour integral representation
of the spectral projection operator.
• Polynomial �ltering based methods. When A is very sparse, and B is the identity, we

can use a subspace or Lanczos iteration applied to p(A) to compute eigenpairs within a
spectral slice, where p(·) is a bandpass polynomial �lter that ampli�es spectral components
associated with eigenvalues within that slice (Li et al. 2016). �is approach only requires
the multiplication of A with vectors. However, an extremely high degree polynomial may
be required when the spectral slice is not well separated from the rest of the spectrum and
the size of the slice is small.

When some of the above methods are carefully implemented, they can potentially outperform the
shi�-invert subspace iteration. However, such implementation is far from trivial, especially on
many-core distributed parallel computing platforms. By this rationale, the development of the
SISLICE method employs the shi�-invert subspace iteration for the evaluation of eigenpairs within
a particular spectral slice.

At the highest level, Alg. 2 consists of three key computational subtasks. One of the subtasks
is used to construct a B-orthonormal basis of a subspace spanned by columns of V . �ere are
several options for performing this task. We employ the Cholesky QR procedure for this purpose,
as outlined in Alg. 3. Although Cholesky QR is not the most accurate procedure for constructing
the B-orthonormal subspace, it is computationally e�cient and easy to parallelize due to its use of
dense matrix-matrix multiplication and Cholesky factorization. For the purposes of this work, we
have found the Cholesky QR procedure to provide a reasonable compromise between accuracy
and e�ciency. �e second subtask applies Eq. (2) to the subspace. When A and B are dense, we
employ the Bunch-Kaufman (LDLT ) factorization implemented in LAPACK or ScaLAPACK to
decompose the shi�ed matrix A − σB and repeatedly apply forward and backward substitutions
to solve the sequence of shi�ed linear systems required by the shi�-invert subspace iteration.
In addition to the fact that the LDLT factorization is very e�cient and highly parallelizable, the
diagonal matrix, D, of the factorization may be further used in the validation of eigenpairs within a
spectral slice (see Sec. 2.2 for details). When A and B are sparse, we may use a symmetric sparse
solver such as those implemented in MUMPS (Amestoy et al. 2001, 2006), PARDISO (Schenk and
Gärtner 2002, 2006; Schenk et al. 2000), symPACK (Bachan et al. 2019, 2017), or SuperLU (Li 2005)
to solve the shi�ed linear systems. �e third subtask is used to perform a subspace rotation to
extract approximate eigenpairs from the subspace V(M ) a�er the subspace iterations is terminated.
As the eigenvectors of the shi�-invert transformed system are invariant under ξ , approximate
eigenpairs of (A,B) with eigenvalues in the spectral neighborhood of σ may be extracted through
the Rayleigh-Ritz procedure outlined in Alg. 4 using the subspace obtained from iteration of Eq. (6).
�ese approximate eigenpairs are referred to as Ritz pairs.

Remark that the algorithm outlined in Alg. 2 is the simplest version of the shi�-invert subspace
iteration. Several modi�cations can be made to improve the performance and robustness of the
algorithm, especially in the context of a convergent sequence of matrix pencils which must be
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Algorithm 3: �e Cholesky QR Procedure: CholeskyQR(V ,B)

Input :V ∈ RN×k , B ∈ RN×N with B SPD
Output :Z such that ZTBZ = I

1 Y ← VTBV

2 LLT ← Y (Cholesky factorization)
3 return Z ← VL−T

treated in Eq. (1). For example, the number of columns of V in Eq. (6) need only be at least k to
obtain approximations for k eigenpairs. In practice, the convergence rate of Eq. (6) in obtaining the
k desired eigenpairs may be drastically improved by choosing a trial vector space which is several
times larger than k (see Sec. 5.4 for examples). Further, we may exploit the fact that (X (i),Λ(i)) need
not be computed to full accuracy until the SCF iterations of Eq. (1) is nearly converged. �e rate at
whichV(m) approaches X in Eq. (6) largely depends on the choice of initial guessV(0). If the distance
betweenV(0) and X (as measured in terms of subspace angle) is su�ciently small, convergence may
be achieved in only a few subspace iterations. AsA(i) converges toA, the change in the eigensystem
between (A(i),B) and (A(i+1),B) becomes su�ciently small such that the distance between X (i) and
X (i+1) is also small. �us, Eq. (6) may be seeded with X (i) to obtain X (i+1) in these last few SCF
iterations to enable faster convergence. �is assumption is typically most valid in the last few SCF
iterations, though this seeding procedure will be demonstrated to be e�ective throughout the SCF
procedure in Sec. 5.

For each spectral shi� selected to partition the spectral region of interest, σj , we will associate a
subspace obtained by performing a set of shi�-invert subspace iterations using that shi�,Vj ∈ RN×k .
From each Vj , we may compute a set of Ritz pairs, (Λj ,X j ), which approximate k eigenpairs of
(A,B) in the spectral neighborhood of σj . From each (Λj ,X j ), we may compute a set of residuals,
R j = AX j −BX jΛj ∈ RN×k , from which we may evaluate a vector of residual norms, r j ∈ Rk , as the
2-norm of the columns of R j . �e tuple (σj ,Λj ,X j , r j ) will be referred to as the j-th spectral probe
throughout the remainder of this work and will be occasionally denoted SP(σj ). We note for clarity
that one need not consider both Vj and X j simultaneously due to the fact that they admit identical
linear spans (X j is simply a rotation of Vj ). As X j contains more useful information related to the
eigensystem of (A,B) than Vj , Vj is typically discarded in favor of X j for eigenvalue calculations.

Algorithm 4: �e Rayleigh–Ritz Procedure: RayleighRitz(A,B,V )

Input :Symmetric A,B ∈ RN×N with B SPD, V ∈ RN×k with VTBV = I ,
Output : (X ,Λ) which approximate k eigenpairs of (A,B) spanned by the columns of V .

1 Y ← VTAV

2 Solve YZ = ZΛ (Diagonalization)
3 X = VZ

4 return (X ,Λ)
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2.2 Validation of Spectral Slices
In the SISLICE method, the approximate eigenpairs associated with a particular slice (σj ,σj+1) are
obtained by analyzing the Ritz pairs that are computed from the spectral probes de�ned by the
spectral shi�s σj and σj+1, which we denote by SP(σj ) and SP(σj+1), respectively. �e Ritz values
obtained from SP(σj ) can potentially overlap with those obtained from SP(σj+1). It is also possible
that σj and σj+1 are too far apart that a number of desired eigenvalues are not captured by either
SP(σj ) or SP(σj+1). �us, a key aspect in the development of a robust spectrum slicing method is to
provide a mechanism to select approximate eigenpairs within a spectral slice from the Ritz pairs of
its associated probes as to avoid double counting and detect any missing or spurious eigenpairs, if
present. Such selected eigenpairs will be referred to as being validated.

To select candidates for validation within the spectral slice (σj ,σj+1), we examine the Ritz values
computed from the spectral probes SP(σj ) and SP(σj+1) that are within (σj ,σj+1). We choose a point
τ between σj and σj+1, e.g., τ = (σj + σj+1)/2 and select all Ritz values obtained from SP(σj ) that
are in (σj ,τ ), and those from SP(σj+1) that are in (τ ,σj+1) as validation candidates. A graphical
representation of this candidate selection process is depicted in Fig. 2. For the the spectral slices at
both ends of the desired spectral region of interest, validation candidates are selected as those Ritz
values that are in [λmin,σ1) and (σns+1, λmax], respectively.

�e duplication of eigenvalues can be checked by measuring the mutual orthogonality of the
corresponding eigenvectors. However, such a scheme would require comparing Ritz vectors com-
puted by di�erent spectral probes. In a parallel implementation in which di�erent spectral probes
are mapped to di�erent processor groups, this scheme would require excessive data communica-
tion. We choose to check duplication or missing eigenvalues by simply comparing the number
of validation candidates with the exact eigenvalue count that can be obtained from the factoriza-
tion LjD jL

T
j = A(i) − σjB for each spectral shi�. By making use of Sylvester’s inertia theorem

(Sylvester 1852), we are able to ascertain the exact number of eigenvalues within the slice bounded
by (σj ,σj+1) by taking the di�erence between the number of negative diagonal elements of D j+1
and D j , respectively.

If the number of validation candidates is equal to the expected number of eigenpairs within
that slice, we view each of the candidates as a reasonable approximation to a true eigenpair and
consider it to be validated.

If the number of validation candidates is less than the expected number of eigenvalues in (σj ,σj+1),
there are true eigenpairs within this spectral slice that are not captured by either SP(σj ) or SP(σj+1).
�us, either more shi�-invert subspace iterations need to performed or a spectral shi� must be
added somewhere within (σj ,σj+1) to ensure that all desired eigenpairs are accounted for. We
examine the speci�cs of this shi� addition in Sec. 3.3.

If the number of candidates exceeds the expected number of eigenvalues within (σj ,σj+1), a
number of the validation candidates are likely duplicated copies between adjacent spectral probes.
In this case, we select the candidates with the smallest residual norms to be validated. �is strategy
follows from the assumption that Ritz values that approximate eigenvalues closer to a spectral shi�
tends to converge faster. �at is, if θ j and θ j+1 are both approximations to the same eigenvalue λ that
lies in (σj ,τ ), but are obtained from two di�erent spectral probes SP(σj ) and SP(σj+1) respectively,
the residual norm associated with θ (i) is likely to be smaller because λ is closer to σj than to σj+1.

3 SHIFT SELECTION AND MIGRATION
In this section, we examine the selection of the set of spectral shi�s {σj }nsj=1 which partition the
spectral region of interest into ns + 1 spectral slices. �ere are are three primary topics related to
this selection which are explicitly treated in this work:
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σj

σj+1

Fig. 2. Scheme for selection of validation candidates for the spectral slice bounded by (σj ,σj+1). The points
with markers above the axis are Ritz values computed from the SP(σj ), and those below the axis are those
computed from SP(σj+1). The vertical dashed line denotes the midpoint of the spectral slice (τ ). The filled
black circles represent the validation candidates for the slice, while the open circles represent Ritz values
which may belong to other spectral slices depending on the placement of σj−1 and σj+2. The red triangles
represent Ritz values which are not considered for validation for the spectral slice.

• As the distribution of eigenvalues in the spectral region of interest is not known a priori;
we must obtain some sort of estimation of this distribution to properly select spectral shi�s
as to maximize the amount of useful computation and avoid shi� placement in spectral
regions which do not contain eigenvalues. In this work, we utilize a Lanczos approximation
for the so-called density of states (DOS) of the considered matrix pencil to obtain this
estimation.
• As the Lanczos DOS approximation does not provide an exact description of the desired

eigenvalue distribution, it is o�en possible to obtain a be�er set of shi� placements given
a more accurate description of the eigenvalues of interest. Further, for the sequence
of diagonalizations given in Eq. (1), the eigenspectrum is expected to change as the SCF
iterations progress towards convergence. As such, we must develop a method that iteratively
re�nes the placement of the spectral shi�s throughout the SCF procedure to maintain
accuracy and load balance throughout the calculation. In this work, we examine the use of
eigenvalue clustering between successive SCF iterations for this task.

3.1 Density of States
Consider the eigenvalue decomposition of the pencil (A,B) in Eq. (1). �e exact density of states
(DOS) for (A,B) is given by

y(λ) =
N∑
j=1

δ (λ − λj ), (7)

where δ (·) is the Dirac delta distribution. For any particular λ, the spectral density in the neighbor-
hood of λ is given by y(λ)dλ. �us, for an interval [a,b] ⊂ R, we may de�ne a quantity

γ (a,b) =
∫ b

a
y(λ)dλ, (8)

which provides an eigenvalue count on [a,b]. Using this de�nition, we may de�ne the cumulative
density of states (CDOS) which returns the number of eigenvalues of (A,B) below a certain value

c(λ′) ≡ γ (−∞, λ′) =
∫ λ′

−∞
y(λ)dλ. (9)

Clearly, the construction of the exact DOS and CDOS requires a full diagonalization of (A,B), which
is something we are trying to avoid. In this section we examine the estimation of the DOS as
a linear combination of smooth functions associated with a set of Ritz pairs obtained from the
Lanczos procedure.
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3.1.1 The Lanczos Density of States Approximation. Consider the k-step B–orthogonal Lanczos
algorithm (Saad 2011) which produces a factorization of (A,B) of the form

B−1AVk = VkTk + fke
T
k , (10)

with

VT
k BVk = Ik , (11a)

VT
k Bfk = 0k . (11b)

Here Ik ∈ Rk×k is the k-by-k identity matrix, 0k ∈ Rk is a vector of zeros, and Tk ∈ Rk×k is the
symmetric tridiagonal Lanczos matrix. ek ∈ RN is the kth column of the N × N identity matrix.

Suppose (θ j ,дj ) is an eigenpair of Tk . �e Ritz pair (θ j ,Vkдj ) is considered an approximation to
an eigenpair of (A,B) and (eT1 дj )2 is an approximation to the spectral density of eigenvalues in the
neighborhood of θ j (Li et al. 2016; Lin et al. 2016). To obtain the spectral density at points other
than θ j , i.e. the DOS, we may convolve these approximate eigenpairs with smooth functions such
as Gaussians or Lorentzians centered at the approximate eigenvalues. In this work, we consider
expansion in terms of Gaussian functions such that the approximate DOS may be wri�en as

y(λ) = N
k∑
j=1

ζ 2
j exp

(
−
(λ − θ j )2

νj

)
, ζj = eT1 дj . (12)

νj is a length parameter which determines the width of the Gaussian. For the purposes of this work,
we choose νj so that the Gaussian exp[−(λ − θ j )2/νj ] nearly vanishes some distance dj away from
θ j . �e parameter dj is chosen to be either the maximum or average of θ j −θ j−1 and θ j+1 −θ j . Some
safeguard is used to prevent dj from becoming too small when eigenvalues are tightly clustered.
Due to the linearity of y(λ), we may obtain a closed form expression for the corresponding CDOS
as

c(λ) = N
√
π

2

k∑
j=1

ζ 2
j
√
νj

(
erf

(
λ − θ j√
νj

)
+ 1

)
, (13)

where erf(·) is the error function de�ned as
d erf(x)

dx =
2
√
π
e−x

2
. (14)

3.1.2 Selection of Shi�s from the Density of States. We now discuss how to partition the spectrum
into di�erent slices and select shi�s for spectral probes based on the DOS and CDOS obtained
from a Lanczos algorithm. When the CDOS of (A,B) increases gradually in a nearly continuous
fashion (see Fig. 9), our strategy is to partition CDOS uniformly into a number of intervals with
approximately k eigenvalues per interval, and use either the bisection or Newton’s algorithm to
�nd the roots of

y(ω) = kj, j = 1, 2, ...,ne/k,
which will form the endpoints of the spectral intervals. �e shi� for each probe can be chosen to
be the midpoint of the interval or a DOS weighted average of a set of uniformly sampled points ωi
within the interval, i.e.,

σ =

∑m
i=1ωiy(ωi )∑m
i=1 y(ωi )

.

�is strategy does not work well when the spectrum has clusters of eigenvalues with large gaps
in between. �ese clusters and gaps can be revealed from the DOS estimation as isolated peaks or
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sharp increases in the CDOS (see Fig. 8). In this case, we should partition the spectrum in such a
way that each isolated cluster is contained in one interval.

We can locate spectral clusters by identifying local maximizers of the DOS. However, this needs
to performed at an appropriate spectral resolution. Evaluating DOS on a very �ne spectral grid
may produce too many “arti�cial” local maximizers that are introduced by the inexact nature of
the estimated DOS. Evaluating DOS on a very coarse grid may result in missing an important local
maximizer (hence a cluster).

We use the following strategy to adaptively re�ne the DOS so that well separated spectral clusters
can be identi�ed, the bounds of the intervals that contain these clusters can be properly de�ned,
and the shi�s assigned to spectral probes for seeking eigenvalues within these intervals can be
properly selected.

(1) Using the lower and upper bounds λl , λu of the spectrum returned from the Lanczos
procedure, we can evaluate the DOS at a set of uniformly distributed points

ωi = λl + (λu − λl )/(n − 1)i,

for i = 0, 1, ...,n − 1.
(2) We identify local maximizers among y(ωi ), where y(ω) is de�ned by (12).
(3) Between two local maximizers ω̂j−1 and ω̂j , we �nd the local minimizer of the DOS,

µ j = argminω ∈(ω̂j−1,ω̂j )y(ω).

A local minimizer of the DOS between ω̂j and ˆωj+1 can be found also. �ese local minimizers
de�ne the bounds of the interval (lj ,uj ) that contains the cluster centered at ω̂j . Note that
uj = lj+1.

(4) We estimate the number of eigenvalues within the jth interval by computing c(uj ) − c(lj ),
where c(·) is the CDOS de�ned in (13).

(5) If the estimated eigenvalue count for the jth interval is smaller than a threshold (e.g., 1
or 2), and if the interval does not contain a Ritz value, we simply delete that interval, and
adjust the bounds of the adjacent intervals.

(6) If the estimated eigenvalue countm for the jth interval is larger than a preselected threshold
(e.g., 50), we re�ne the spectral grid within (lj ,uj ) and evaluate y(ω) at ωi

j = lj + (uj −
lj )/(m − 1)i , for i = 0, 1, 2, ....m − 1. We identify additional clusters within (lj ,uj ) by �nding
the local maximizers within this interval, and using the procedure described in step 3 to
determine the bounds of new intervals and a new shi� within each new interval. Fig. 3
shows that an additional cluster around -6.0 is identi�ed when the third cluster shown in
Fig. 8 is re�ned. �e bounds of the re�ned cluster are also adjusted.

(7) Steps 6 is repeated until no new local maximizer can be found in each interval. Fig. 4 shows
all new clusters identi�ed by the above process at the upper end of the spectrum of the
Silane matrix.

(8) When no new cluster can be found, we go through each cluster and partition the a cluster
uniformly into smaller intervals if the estimated number of eigenvalues within that cluster
is larger than a threshold c and when

max
{
σj − li
σj − σj−1

,
ui − σi
σj+1 − σj

}
> r , (15)

for a prescribed ratio tolerance r . In practice, we o�en choose c = 30 and r = 0.6, although
these parameters can be adjusted by the user.
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Fig. 3. Refining the resolution of the DOS in the third cluster shown in Fig. 8a reveals an additional cluster
near -6.0 (b). The refinement also allows us to set tighter bounds for refined clusters.

3.2 Shi� Refinement and Eigenvalue Clustering
Due to the limited number of Ritz values that can be extracted from the Lanczos method in the
spectral interior, it is possible that the initial selection of spectral shi�s produced by a Lanczos DOS
estimation procedure is far from optimal. In particular, shi�s may be placed in spectral regions
devoid of eigenvalues. Another possible scenario is that an insu�cient number of shi�s are placed
in regions that contain a disproportionately large number of eigenvalues. An illustration of this
issue is given on the axis labeled “DOS” in Fig. 5. However, shi� misplacement can be incrementally
corrected in subsequent SCF iterations by using a clustering algorithm to partition previously
computed eigenvalue approximations and re�ne the shi� selection.

For each SCF iteration, we obtain a set of eigenpair approximations for (A(i),B). �us, for
i > 0, we have available to us a set of approximate eigenvalues for (A(i−1),B). In the early SCF
iterations, when the change in eigensystem between two subsequent iterations is relatively large,
it is possible that the shi�s selected for (A(i−1),B) would not be appropriate for the slicing of the
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200
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λ

D
O

S

Fig. 4. Refined DOS at the upper end of the spectrum of the Silane matrix. The blue solid lines mark the
bounds of all clusters, and the black dashed lines mark the shi� positions in each cluster.
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spectrum for (A(i),B). We discuss a strategy to determine this (dis)similarity and strategies for
subsequent shi� selection in Sec. 3.3. However, if the eigenvalues of (A(i),B) are su�ciently close
to those of (A(i−1),B), then we may use the approximated eigenvalues of (A(i−1),B) as a reference
to determine the spectral shi� placement for the spectrum slicing of (A(i),B). Due to the localized
nature of the shi�-invert spectral transformation described in Eq. (2), rapid convergence of the
shi�-invert subspace iteration is achieved when spectral shi�s are placed centrally in clusters of
eigenvalues. �us, we may determine more optimal shi� placement by identifying spectral clusters
from the computed eigenvalues (A(i−1),B) and placing shi�s in the centroids of these clusters for
determination of the eigenpairs of (A(i),B).

To identify spectral clusters, we employ the k-means clustering algorithm (Lloyd 1982). Algo-
rithm 5 depicts how the k-means algorithm generates a �xed number of clusters and their centroids
from a set of properly ordered approximate eigenvalues. At the i-th SCF iteration for i > 0, we use
Algorithm 5 to identifyns clusters from the validated eigenpairs obtained from the (i−1)-st iteration.
�e centroids of the clusters may then be used in the generation of the i-th set of spectral shi�s. As
the SCF procedure converges, the centroids of the clusters will also converge to a particular set of
spectral shi�s. An illustration of this convergence behavior is given in Fig. 5.

Algorithm 5: Ordered K-Means Clustering: KMeans(K ,X , {ck })

Input :Number of desired clusters K , ordered data X = {xi }Ni=1, initial guess of centroids,
{ck }Kk=1.

Output :A set of K clusters, {(Xk , ck ) |Xk ⊂ X }Kk=1 such that X =
⋃K

k=1 Xk and Xk ∩ X j = ∅
for k , j.

1 Sort elements of X in non-decreasing order;
repeat

2 Initialize Xk = ∅, ∀k ;
3 k ← 1;
4 j ← 1;

for i = 1:N do
if xi > ck and k < K then

5 j ← �rst j s.t. xi ≤ c j ;
6 k ← min(K , j + 1);

end
7 m ← 1

2 (ck + c j );
if xi < m then

8 X j = X j ∪ {xi };
else

9 Xk = Xk ∪ {xi };
end

end
10 Update centroids: ck = 1

|Xk |
∑

x ∈Xk
x , ∀k ;

until {(Xk , ck )} is unchanging;
11 return {(Xk , ck )};
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Although the k-means clustering problem is generally NP-hard, we do not necessarily need
to obtain a globally optimal solution to the clustering problem in order to identify appropriate
spectral shi�s. Our objectives are to identify eigenvalue clusters and to partition nearly uniformly
distributed eigenvalues into slices of roughly equal size. In general, determination of ns clusters is a
drastic over clustering of the Ritz values. However, k-means clustering usually results in equal sized
clusters, even in the case of over clustering. Due to the fact that ns is relatively small, obtaining
clusters from this data using k-means may be achieved with negligible cost.

�e k-means algorithm is an iterative procedure initialized with a set of guesses to cluster
centroids. �e choice of these initial guesses can have a signi�cant e�ect on the convergence of the
algorithm and the quality of cluster centroids it produces. In the SISLICE method, these guesses are
usually taken to be the spectral shi�s used in the previous SCF iteration. However, if the previous
spectral shi�s are generated from the DOS shi� selection strategy, it is possible that the k-means
algorithm can converge to a suboptimal solution if the centroids are initialized with these shi�s. To
address this issue, we employ the k-means++ (Arthur and Vassilvitskii 2007) cluster initialization
strategy to improve initial guesses of the centroids prior to the k-means clustering process.

Assuming that the eigenvalue distribution does not change drastically throughout the SCF
procedure, k-means also allows the SISLICE method to track shi� migration between SCF iterations
as shown in the axes labeled “Update” in Fig. 5. Until convergence is reached, shi� migration is
performed using the validated eigenpairs of the previous SCF iteration. As Alg. 5 converges to
the local optimum nearest to the initial guess, this choice of guess allows for the k-means shi�
migration strategy to converge to a single set of shi�s as the SCF converges. It is important that
the clustering is performed on validated eigenpairs to avoid over sampling of spectral regions
for which the Ritz pairs of adjacent spectral probes overlap or contain spurious Ritz values. We
demonstrate the e�cacy of this migration scheme in Sec. 5.

DOS

Update 1

Update 2

Update 3

σ1 σ2 σ3

σ1 σ2 σ3

σ1 σ2 σ3

σ1 σ2 σ3

Fig. 5. A graphical representation of the shi� migration process throughout the SCF procedure. The SCF
iterations progress from top to bo�om with the filled circles representing the validated Ritz values at that
iteration. σ1, σ2, σ3 represent the spectral shi�s used to obtained the Ritz values at each iteration. The shi�s
for the first SCF iteration are representative of a typical DOS-shi� selection scheme where shi�s are chosen
both in regions without eigenvalues as well as regions with a disproportionately large number of eigenvalues
due to inaccuracy in the DOS approximation. At each subsequent SCF iteration, new shi�s are chosen via
k-means clustering of the Ritz pair obtained from the previous iteration.

Once a clustering of the validated Ritz values has been obtained, we may use the centroids of
those clusters to generate the set of spectral shi�s for the next SCF iteration. Instead of creating new
spectral probes, we would like to reuse the Ritz vectors produced by the existing spectral probes
as the initial guesses to the desired eigenvectors in the subsequent shi�-invert subspace iteration
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to improve convergence. �erefore, in the SISLICE method, we update the shi�s of the existing
spectral probes based on the clustering information rather than starting completely from scratch.
To update the shi� for each spectral probe, we form a mapping between the eigenvalue clusters and
spectral probes such that each cluster is mapped to the probe with which it has maximal overlap.

In the case that this map is bijective, the spectral shi� associated with the spectral probe is
taken to be the centroid of its associated cluster. However, it is possible, especially in the early SCF
iterations when the eigenspectrum undergoes considerable change, that this map is not bijective.
As a result, there is some ambiguity as to how to best update the probes which have no preimage
under this mapping.

�e case of non-bijective maps between clusters and spectral probes is typically a symptom
of poor shi� selection in the previous SCF iteration resulting in some spectral probes picking up
only a few validated Ritz values while others capturing a disproportionate number of validated
Ritz values. As the validated Ritz values are separated by the k-means algorithm into di�erent
clusters, validated Ritz values retrieved from one spectral probe may be separated into several
clusters resulting in several clusters being mapped to the same spectral probe. (See the schematic
illustration in Fig. 6.) In the meantime, the few validated Ritz values obtained by a poorly placed
spectral probe SP(σj ) may be placed into a cluster that gets mapped to a di�erent spectral probe
SP(σj ), leaving SP(σj ) without any cluster to map to.

σ1 σ2

σ1 σ2

Fig. 6. A schematic illustration of how multiple cluster may be mapped to the same probe, and how an old
probe may be deleted and a new probe can be inserted. The blue and red dots are two clusters of approximate
eigenvalues that are both mapped to the same spectral probe centered at σ2. A�er the mapping between
clusters and the previous spectral probes is established. The probe centered at σ1 is deleted because no cluster
is mapped to it. A new problem centered at a new shi� σ1 is inserted, and σ2 is also moved to the right.

When several clusters are mapped to the same spectral probe, we merge these clusters into a
single cluster. �e resulting centroid of the merged Ritz values is taken to be the spectral shi� of
the associated spectral probe. In the case that the mapped cluster contains too many eigenvalues, a
probe may be inserted to ensure proper load balance.

If a spectral probe is not mapped to any cluster, it is simply deleted. However, since the number
of spectral shi�s (and thus the number of spectral probes) is �xed throughout the SCF procedure,
when a probe is removed, another probe must be added to maintain this �xed number of shi�s. We
choose to add a probe to a cluster that contains the largest number of Ritz values. To add such a
spectral probe to such a cluster, we need to break up the cluster �rst into two clusters. In practice,
this may be achieved by performing a 2-means clustering of the Ritz pairs in the largest cluster.
One of the clusters is mapped to the original spectral probe mapped to the cluster before it was
broken up. �e shi� associated with that cluster is replaced with the centroid of the new smaller
cluster. �e other cluster is mapped to the newly added spectral probe. In addition to se�ing the
shi� of the probe to the centroid of the new cluster, we also need to copy (or send in a distributed
memory implementation) the Ritz vectors associated with the Ritz values in this cluster to the
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added spectral probe. �is process of breaking up a large cluster and adding a new spectral probe is
repeated until the desired number of spectral shi�s and probes is obtained. �e speci�cs regarding
probe insertion in a distributed infrastructure are discussed Sec. 4.

3.3 Missing Eigenvalues
Because A(i) can change signi�cantly from A(i−1) in early SCF iterations, a shi� selection scheme
based on the clustering of approximate eigenvalues of A(i−1) may not be optimal for computing
eigenpairs of A(i). In particular, it is possible that spectral probes constructed from the subopti-
mal selection of target shi�s miss some eigenvalues. �e spectral slices in which these missing
eigenvalues reside can be identi�ed in the validation process described in Sec. 2.2.

When missing eigenvalues are detected, we perform a new DOS estimation on (A(i),B) with
an appropriate resolution to place new shi�s in spectral slices that contain missing eigenvalues.
New spectral probes are created to recompute approximate eigenvalues within these newly created
spectral slices. �is is a costly step because the next SCF cycle cannot start until all missing
eigenvalues are accounted for. An example of this state of a�airs is demonstrated in Sec. 5.3.

To reduce the likelihood of missing eigenvalues resulting from shi� misplacement, we can
monitor the convergence of SCF for drastic changes in the spectrum by comparing the partial traces
of the system matrices within the subspace spanned by the previously validated eigenvectors. For
example, given the metric

η(V ,A) = Tr
(
VTAV

)
, (16)

if the di�erence between η(X (i−1),A(i−1)) and η(X (i−1),A(i)) is larger than some speci�ed threshold,
then the spectra of the matrices may be deemed to be su�ciently dissimilar.If this is found to be
the case, then it would be bene�cial to use the DOS shi� selection strategy discussed in Sec. 3.1.2.
Although this strategy does not completely eliminate the possibility of missing eigenvalues (because
individual eigenvalues can move around without a�ecting the trace of the A(i)), it may help reduce
that possibility and the cost associated with generating new probes to seek the missing eigenvalues.

4 PARALLEL IMPLEMENTATION
�e algorithmic subtasks described in the previous sections have been constructed in such a way
as to allow for maximal concurrency in the slicing of the spectral region of interest: each of the
spectral probes may be constructed independently of any other spectral probe. As the construction
of the spectral probes through shi�-invert subspace iterations constitutes the bulk of the work in the
SISLICE method, this task independence should lead to scalable performance. �e slice validation
scheme outlined in Sec. 2.2 would require some level of synchronization between independent
computing units. Further, the shi� insertion and deletion schemes outlined in Sec. 3.2 would require
some data to be copied from some processors/nodes to others. However, these communication and
synchronization overheads are generally small as we will see in the next section.

In this section, we outline the salient aspects of the parallel implementation of the SISLICE
method.

We note that the parallelization discussed here focuses exclusively on the parallel execution of
spectral probes. An additional level of �ner grain parallelism exists within each spectral probe. If
matrices A and B can be replicated and stored on each single many-core compute node, a hybrid-
parallelism scheme utilizing both shared-memory and message passing parallelism may be achieved
through exploitation of optimized implementations of threaded BLAS and LAPACK (such as those
found in Intel(R) MKL, IBM(R) ESSL, OpenBLAS, BLIS, ATLAS, cuBLAS, etc) within a particular
MPI rank. While we do not treat this level of parallelism explicitly in this section, its leverage is
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trivial on modern computing architectures and is implied for the numerical experiments in Sec. 5.
If A and B are too large to be stored on a single compute node, then the factorizations and linear
system solves required for each probe may be performed using ScaLAPACK in the case of dense
matrices, or a distributed sparse solver such as SuperLU, symPACK, MUMPS, or PARDISO in the
case of sparse matrices. We should note that the parallel scalability of LDLT factorization and back
substitutions for solving triangular systems with multiple right hand sides is generally much be�er
than that can be achieved in a dense eigensolver.

�ese distributed calculations for each spectral probe may take place on a subset of the total
number of MPI ranks, allowing leverage of massive parallelism on large computing clusters. We
do not treat this particular parallelism scheme in this work, but it has been discussed at length in
other related work (Keçeli et al. 2016; Zhang et al. 2007).

4.1 Spectral Probe Distribution and Synchronization
�e SISLICE method is designed for taking advantage of computer systems that have a large amount
of computational resource in terms of compute nodes and cores within each node. In an ideal
scenario, the number of spectral probes should match the number of nodes (or groups of nodes) so
that all probes can be executed simultaneously. �e optimal number of nodes (or group of nodes)
that should be used to perform the computation can be determined by the spectrum partition and
shi� selection scheme discussed in Sec. 3.1. One can query such information from the solver in a
separate analysis run prior to running the SISLICE solver.

When the number of computational nodes is less than the number of spectral probes, a round-
robin distribution of probes to nodes can be used, i.e., SP(σj ) may be mapped to the (j mod nr )th
MPI rank, where nr is the number of MPI ranks. In this case, the computation is not load balanced
if nr does not divide ns .

Once the spectral probes have been constructed, each SP(σj ) contains a set of Ritz pairs which
approximate the eigenpairs in the neighborhood of σj . However, the slice validation scheme
described in Sec. 2.2 requires knowledge of Ritz pair information from adjacent probes. If each
of the adjacent spectral probes has been constructed on a di�erent MPI rank (or group of MPI
ranks), the validation scheme requires some level of communication / synchronization of Ritz pair
information between the MPI ranks. However, the validation scheme only requires knowledge of
the Ritz values and associated residual norms to validate the spectral slices. �e Ritz vectors are
not explicitly required.

If the Ritz values and residual norms were only to be used in the slice validation scheme, their
synchronization could be further limited to only the neighboring ranks of the owner of a particular
spectral probe. However, because the entire set of validated Ritz values is used in updating
spectral shi�s through k-means clustering (as described in Sec. 3.2), it is useful to synchronize this
information across all of the MPI ranks. While a distributed implementation of k-means clustering
is possible, the fact that each spectral probe only accounts for a relatively small number of validated
Ritz pair would require excessive communication to perform the clustering. Because the storage
requirement of the Ritz values and residual norms is negligible relative to the Ritz vectors, this
synchronization scheme poses no storage overhead. In the implementation of the SISLICE method
discussed in this work, the set of spectral probes is represented as a replicated data structure on
each MPI rank which is synchronized according to Fig. 7 at each SCF iteration. As the Ritz values
and residual norms are replicated across each MPI rank, the tasks of slice validation and shi�
updates may also be replicated to avoid communication. We note for clarity that in the case of
random initialization of the clustering problem through e.g. k-means++, the Ritz value clustering
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may still be replicated through the use of pseudo random number generation using the same seed
value. �e scalability of this distribution and synchronization scheme is demonstrated in Sec. 5.5.
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Fig. 7. Spectral probe distribution and synchronization scheme for the SISLICE method for an example case
of 3 spectral probes distributed among 3 MPI ranks. The data-structure which holds the spectral probe
information is replicated among the MPI ranks with each of the ranks constructing its probe locally. A�er
the probes have been constructed, each rank broadcasts its Ritz values and residual norms to the other MPI
ranks, thus synchronizing this data across the system. This synchronization process does not broadcast the
Ritz vectors as to avoid excessive communication of large amounts of data.

4.2 Spectral Probe Insertion and Removal
As was discussed in Sec. 3.2, occasionally shi� selection and migration schemes employed by the
SISLICE method yield suboptimal shi� placement leading to redundant spectral probes and probes
which are responsible for a disproportionate number of validated eigenpairs. �is is typically the
case in the early SCF iterations due to the crude DOS approximation by the Lanczos procedure
described in Sec. 3.1. �e presence of redundancies in the spectral probes leads to a load imbalance
which should be avoided to ensure scalability on large, distributed computing systems. For the
purposes of this section, the term “load balance” should be thought of as balance of useful work.
Technically speaking, even in the case of redundancies in the spectral probes, the computational
work performed for each spectral probe will always be roughly the same given that the number of
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subspace iterations performed and subspace dimensions are uniform across all probes. �us this
work is always “balanced”. However, we want to ensure that each rank is performing a roughly
equal amount of useful work (in the sense of yielding a roughly equal number of validated Ritz
pairs) rather than wasting valuable computational resources in spectral regions where it is not
needed.

As the number of spectral probes is �xed in the SISLICE method, removal of a spectral probe
necessitates the insertion of a spectral probe to balance the work in another spectral region. �is
probe removal necessarily leads to a load imbalance if the work was balanced in the previous SCF
iteration. As discussed in Sec. 3.2, probes are inserted so as to break up large clusters of validated
Ritz values such that they e�ectively span multiple probes a�er the subsequent shi�-invert subspace
iterations. In a distributed computing environment, care must be taken to ensure probe insertion
is performed in such a way as to balance the work between independent computing ranks while
avoiding a large communication overhead. As the k-means clustering is replicated on each rank,
probe insertion may also be e�ectively replicated with only minimal communication. For each
probe to be inserted, the determination of the two new spectral shi�s is replicated on each rank.
�e new probe which is to be inserted is assigned to the rank with the least amount of work (thus
ensuring load balance). Once this decision has been made, the probe whose shi� has been moved
through this procedure communicates its Ritz vector data to the newly inserted probe to allow its
reuse in the subsequent SCF iteration. �e cost of this point-to-point communication is relatively
small in practice and may be overlapped with the determination and communication of other probe
insertions.

In the case when shi�s must be inserted due to missing eigenvalues within a particular spectral
slice as described in Sec. 3.3, we may leverage the fact that the computation is done in parallel to
our advantage. It may be the case that the DOS shi� insertion strategy yielded several shi�s in the
spectral region that contains the missing eigenvalues. Rather than have processors or processor
groups sit idle while the missing eigenpairs are obtained sequentially, the newly inserted probes
may be distributed in the same manner as the initial probe distribution. Due to the fact that missing
eigenvalues are typically a symptom of poorly placed shi�s, not of too few shi�s, inserting probes
will not yield more useful probes than ns , i.e. if a probe had to be inserted to resolve missing
eigenpairs, it is typically the case that some probes did not produce validated eigenpairs. However,
even if each of the probes from the �rst round of subspace iterations produced validated eigenpairs,
the mapping scheme between eigenvalue clusters and spectral probes will preclude the possibility
of yielding more than ns probes for the subsequent SCF iteration. �is is due to the fact that
the SISLICE method obtains ns clusters regardless of the number of probes used to produce the
validated eigenpairs in the previous SCF iteration. �us, even in the case of probe insertion in the
previous SCF iteration, the SISLICE method ensures load balance is maintained in subsequent SCF
iterations.

5 NUMERICAL EXPERIMENTS
In this section, we report a set of numerical experiments which demonstrate the e�ectiveness of
the proposed shi� selection technique for computing all or a subset of eigenvalues of a matrix
pencil or a sequence of matrix pencils. We examine two limiting cases of eigenvalue distribution
shown in Figs. 8 and 9.

�e Silane test case (Fig. 8, N = 1109) is an all-electron density functional theory calculation
using a Gaussian basis set. Its spectrum exhibits a number of isolated eigenvalue clusters at lower
eigenvalues and a more uniform distribution at larger eigenvalues. �e isolated eigenvalue clusters
at low eigenvalues are a common feature in all-electron density functional calculations. All matrices
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related to the Silane test case in this work were obtained using the NWChemEx so�ware package
(Kowalski et al. [n.d.]).

�e Graphene test case (Fig. 9, N = 9360) is a density functional theory calculation using pseudo-
potentials for the core electrons. As such, its spectrum does not contain isolated clusters. �e more
uniform nature of the spectrum is a common feature in nearly all pseudo-potential based density
functional calculations. All matrices related to the Graphene test case in this work were obtained
using the SIESTA so�ware package (Soler et al. 2002).
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Fig. 8. Lanczos DOS (a) and CDOS (b) for the entire spectrum of Silane (N = 1109). Silane exhibits a number
of isolated eigenvalue clusters (spikes in the CDOS) lower in the spectrum and a more uniform distribution
at larger eigenvalues. The DOS and CDOS calculations were performed using 100 Lanczos iterations with the
converged matrix pencil.
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Fig. 9. Lanczos DOS (a) and CDOS (b) for the lowest 1000 eigenvalues of Graphene (N = 9360). Graphene
exhibits a nearly uniform eigenvalue distribution throughout its entire spectrum. The DOS and CDOS
calculations were performed using 100 Lanczos iterations with the converged matrix pencil.
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5.1 Shi� Selection for a Fixed Matrix Pencil
To demonstrate how the shi� selection strategy enables rapid convergence of the SISLICE method
as the SCF procedure approaches convergence, i.e. when the matrix pencils change very li�le
between SCF iterations, we examine the convergence of eigenpairs for �xed matrix matrix pencils
in this section. �is experiment allows us to gauge the e�ectiveness of the shi� selection strategy
when more accurate estimation of the desired eigenvalues becomes available in successive SCF
iterations.

To simplify our exposition, we examine a set of representative spectral windows for the afore-
mentioned test cases using the converged matrix pencil (A,B) as the representative eigenvalue
problem. Even though the matrix pencil does not change, an arti�cial SCF procedure is carried
out and a new set of shi�s may be chosen a�er a �xed number of subspace iterations have been
performed. �is procedure can be viewed as a generalized (block) Rayleigh quotient iteration.

All calculations in this section were performed using a probe basis dimension of k = 100 and 4
shi� invert subspace iterations per SCF iteration. �e SCF iteration is considered converged if the
maximum of the residual norms associated with all validated approximate eigenpairs is below the
threshold of 10−13. In both of the presented cases, we observe the expected monotonic convergence
of the eigenvalues within individual spectral slices once shi� migration has been performed.

Silane. For the case of Silane, SISLICE was applied to perform a full diagonalization using 100
shi�s so that ne/ns ≈ 11. We examine two representative spectral windows for this test case,
C1 = [−20.59,−20.55] (Fig. 10) and C2 = [−0.9,−0.39] (Fig. 11). �e C1 window represents a dense,
isolated cluster of eigenvalues, while the eigenvalues in C2 are embedded in a dense region of
eigenvalues. Due to the di�erent distribution characteristics of these two spectral windows, the
convergence behavior of the eigenpairs within these windows are di�erent. However, because
these windows are not treated separately in the sense of the larger eigenvalue calculation, SCF
iterations are performed until convergence is reached across the spectrum. Further, in this test case,
DOS-based shi� selection yielded 25 useless probes that were not well placed, i.e. probes which did
not produce any validated eigenvalues a�er the validation scheme outlined in Sec. 2.2 was applied.
�ese probes were redistributed in the subsequent iterations via the method outlined in Sec. 3.2.

Because eigenvalues in C1 are well separated from the rest of the spectrum, the convergence
of the subspace iteration is rapid. Using the DOS based shi� partitioning, a single shi� is placed
just below λ = −20.57 to account for the 37 eigenvalues in the immediate vicinity. In the �rst
SCF iteration, the eigenvalues near the selected shi� converged much more rapidly than those
further away. A�er the �rst SCF iteration, k-means eigenvalue clustering yielded 3 clusters of ∼ 12
eigenvalues with centroids shown in Fig. 10a. Convergence for this spectral window is achieved
within 2 SCF iterations both with and without the k-means shi� update, with all eigenvalues
converging at roughly the same rate notwithstanding their distance to the nearest shi�. We can
also see that for the case of this isolated cluster, k-means clustering yielded no noticeable e�ects on
residual convergence.

In contrast, the convergence of approximate eigenvalues in C2 is less rapid due to the fact that
there exist eigenvalues both immediately below and above the eigenvalues in this spectral window.
DOS based shi� selection and spectrum partitioning placed 8 evenly spaced shi�s to account for the
141 eigenvalues within this window. A�er the �rst SCF iteration, k-means clustering revealed a non-
uniform distribution of eigenvalues within this window, yielding 12 clusters of ∼ 11 eigenvalues.
Convergence rates for the eigenvalues in this window vary considerably based on their distance
to their nearest shi�. Convergence across the entire spectral window is achieved within 4 SCF
iterations with the k-means update and 6 SCF iterations without the update. �us, for this cluster,
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the k-means shi� update yielded a discernible improvement in the residual convergence of the
approximate eigenpairs.
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Fig. 10. Isolated cluster of Silane eigenvalues [−20.59,−20.55] (37 eigenvalues). (a) Initial Lanczos DOS along
with DOS shi� placement and k-means update. (b) Convergence behavior of the largest residual norm in
the spectral window both with and without the k-means shi� update. Overall residual convergence for the
SISLICE method within the spectral window with (d) and without (c) k-means shi� update. Converges in 2
SCF iterations both with and without k-means shi� update.

Graphene. For the case of Graphene, SISLICE was applied to perform a partial diagonalization
of the lowest 1000 eigenvalues using 100 shi�s to obtain ne/ns ≈ 10. As can be seen in Fig. 9a,
the eigenvalue distribution for Graphene is approximately uniform. As such, the DOS based shi�
selection produced uniformly distributed shi�s along the entire spectral window, yielding no useless
probes. We examine the eigenvalue interval C = [−1.4,−1.3] as a representative example of the
convergence behavior for this test case.

Within C , the Graphene test case admits 93 eigenvalues in a roughly uniform distribution. As
such, the DOS based shi� partitioning places 8 evenly spaced shi�s in this spectral window so that
ne/ns ≈ 11. Within each spectral probe, convergence is more rapid near the shi�s than further
away. �e k-means shi� update simply migrates the shi�s without any appreciable changes to the
shi� spacing, i.e. the k-means result yields 8 clusters of ∼ 11 Ritz values with centroids of roughly
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Fig. 11. Embedded cluster of Silane eigenvalues [−0.9,−0.39] (141 eigenvalues) (a) Initial Lanczos DOS along
with DOS shi� placement and k-means update. (b) Convergence behavior of the largest residual norm in
the spectral window both with and without the k-means shi� update. Overall residual convergence for the
SISLICE method within the spectral window with (d) and without (c) k-means shi� update. Converges in 4
SCF iterations with k-means shi� update and 6 iterations without shi� update.

equal spacing. Convergence for this spectral window is achieved within 3 SCF iterations both with
and without the k-means shi� update. We note that in the second SCF iteration, the convergence
is slightly worse with the k-means selected shi� than the DOS selected shi�s. However, as both
methods yield convergence in the same number of SCF iterations overall, we do not believe this
discrepancy to be problematic in practice.

5.2 Shi� Selection for a Converging Matrix Pencil Sequence
In this section, we examine how our shi� selection strategy enables the SISLICE method to e�ciently
compute eigenpairs of pregenerated, convergent sequences of matrix pencils obtained from a true
SCF procedure. Such a test allows us to gauge the ability of the SISLICE method to solve true SCF
eigenvalue problems. To determine the e�cacy of the shi� selection and migration strategy, we
examine both the convergence of the residuals produced by the SISLICE method and the change
of the true eigenvalues throughout the SCF procedure itself. �e la�er is possible because these
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Fig. 12. Graphene eigenvalue cluster [−1.4,−1.3] (93 eigenvalues). (a) Initial Lanczos DOS along with DOS
shi� placement and k-means update. (b) Convergence behavior of the largest residual norm in the spectral
window both with and without the k-means shi� update. Overall residual convergence for the SISLICE
method within the spectral window with (d) and without (c) k-means shi� update. Converges in 3 SCF
iterations both with and without k-means shi� update.

matrices are pregenerated, thus we have access to the exact eigenvalues of these matrices as a
reference to compare the convergence of the SISLICE method. Further, as was examined in the
previous section, we perform analogous comparisons of the SISLICE method both with and without
k-means updates to the spectral shi�s throughout the SCF procedure.

Silane. �e Silane SCF procedure converged within 13 iterations in the NWChemEx so�ware
package. It is the nature of this particular test case (and is typical of all-electron density functional
theory calculation) that the spectrum is separated into well de�ned clusters throughout the entire
SCF procedure. For this reason, we are able to examine the same eigenvalue clusters as discussed
in the previous section for this test case. �e convergence behavior of the SISLICE method applied
to this test case is given in Fig. 13.

Much like the results presented in Sec. 5.1, we see a signi�cant di�erence in the convergence
behavior between the two clusters. Due to the isolated nature of C1, convergence of the subspace
iteration is rapid. Despite changes in the eigenvalues resulting from the changes in the matrix pencil
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in early SCF iterations, the shi� selection strategy we developed is able to track this change, construct
and move spectral probes to obtain eigenvalues within C1 at convergence. �e convergence for
C2 is much less rapid, as was also the case in the previous experiments due to the lack of a large
separation between eigenvalues within C2 and the rest of the spectrum. Furthermore, the change
in the eigenvectors in C1 is much less than those in C2, thus they provide excellent initial guesses
for subsequent SCF iterations. �e eigenvectors in C2 undergo a much more drastic change, but it
can be seen in Fig. 13a that this change becomes less as the SCF converges.

Note that the convergence of the SCF for the Silane test case is not smooth; there is a large
change in the average eigenvalue for the two examined clusters at the ��h SCF iteration. �is is
not an uncommon feature in the SCF procedure for density functional calculations. �ere is an
analogous change in the residual norms for the SISLICE method at the same SCF iteration. �e
reason for this is two-fold. In the case where k-means clustering is used to migrate the shi�s
between SCF iterations, the fact that the clustering is performed using the validated eigenpairs
from the previous SCF iteration yielded a non-optimal placement for the 5th iteration. However,
because the change in residual norms is present also for the experiment without k-means shi�
updates, the shi� migration is not the only reason for this change. �e large change in average
eigenvalue for this SCF iteration is also accompanied by a change in corresponding eigenvectors
within these spectral windows. �us, the validated eigenvectors from the previous SCF iteration
are also not optimal choices for the initial guess to seed the subspace sequence at this iteration.
Remark that the increase in residual norm is in fact less for the C2 cluster with k-means shi�
updates, indicating that the shi� migration strategy is bene�cial for this cluster even when the
shi�s are placed non-optimally.
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Fig. 13. Convergence of the SISLICE method applied to the Silane SCF procedure for two representative
spectral windows. (a) Comparison of the convergence behavior of the largest residual norm in the respective
spectral windows both with and without k-means shi� updates throughout the SCF procedure. (b) The
change in average eigenvalue from the initial average of the two spectral windows respectively.

Due to the fact that Silane admits well-de�ned (and trackable) clusters in its spectrum, we are
also able to examine the shi� migration within these clusters in Fig. 14. �e largest change in shi�
placement occurred between the �rst and second SCF iterations, the former of which was produced
by the DOS strategy. Because the characteristic of these clusters is largely unchanging throughout
the SCF procedure, we are able to see that the k-means shi� update remains visually unchanging
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with the exception of the ��h SCF iteration. Remark that the k-means shi� selection strategy was
able to track the change in eigenvalues in this iteration and subsequently recover to a reasonably
static set of shi�s in the following SCF iterations.

−20.7 −20.6 −20.5 −20.4 −20.3

DOS
Iter 1
Iter 2
Iter 3
Iter 4
Iter 5
Iter 6
Iter 7
Iter 8
Iter 9
Iter 10
Iter 11
Iter 12

σ

(a)

−1 −0.5 0 0.5

DOS
Iter 1
Iter 2
Iter 3
Iter 4
Iter 5
Iter 6
Iter 7
Iter 8
Iter 9
Iter 10
Iter 11
Iter 12

σ

(b)

Fig. 14. Shi�migration for the SISLICEmethod in the Silane SCF procedure for theC1 (a) andC2 (b) eigenvalue
clusters.

Graphene. �e Graphene SCF procedure converged within 10 iterations in the SIESTA so�ware
package. Convergence results for the SISLICE method applied to this problem may be found in
Fig. 15. Unlike the Silane test case, the homogeneity of the eigenvectors for the Graphene test case
makes tracking eigenvalue clusters throughout the SCF procedure impractical. �e eigenpairs in a
particular spectral interval at one SCF iteration are not likely to be of the same character in the
subsequent iterations until convergence is reached. As such, we examine the convergence globally
across all of the 1000 eigenpairs obtained desired for this test case.

Unlike the Silane test case, the SCF convergence for Graphene is smooth. �is smooth SCF
convergence is mirrored in the monotonic convergence of the SISLICE method as the SCF approaches
convergence. When the SCF procedure yielded large changes in the underlying spectrum, i.e. the
�rst 3 iterations, the error produced by the SISLICE method was larger as the bases from the
previous SCF iteration were not as good of an initial guess as they were in the later iterations.
A�er the fourth SCF iteration, the spectrum is only undergoing small changes and the SISLICE
method exhibits rapid convergence. As was the case for the previous numerical experiments with
Graphene, no discernible di�erence between DOS and k-means shi�s is exhibited. For example, at
the ��h SCF iteration, the DOS shi�s produced more accurate results whereas at the seventh, the
k-means shi�s produced more accurate results.

Due to the fact that the SCF underwent large spectral changes in the early SCF iterations, the
extent to which the shi�s were able to be usefully updated using the spectrum of the previous
matrix pencils was limited. As such, shi�s needed to be inserted per the prescription in Sec. 4.2. In
the following subsection, we examine an example of this insertion for the Graphene test case.

5.3 Missing Eigenvalues and Probe Insertion
For the Graphene example, we found that some eigenvalues were missed in the second SCF iteration
due to a poorly placed shi� produced by the k-means clustering of approximate eigenvalues obtained
in the �rst SCF iteration. �e red crosses in Sec. 4.2(a) show all eigenvalues within the spectral
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Fig. 15. Convergence of the SISLICE method applied to the Graphene SCF procedure for the lowest 1000
eigenvalues. (a) Comparison of the convergence behavior of the largest residual norm in both with and
without k-means shi� updates throughout the SCF procedure. (b) The change in average eigenvalue from the
initial average of the lowest 1000 eigenvalues.

slice [−0.75,−0.56] that contains the missing eigenvalues. �e black crosses mark the locations
of the approximate eigenvalues that were found by the spectral probe associated with the poorly
placed target shi� to the le� of this interval (marked by a solid black circle).

In this case, a�er performing an DOS estimate of the matrix pencil updated in the second SCF
iteration as suggested in Sec. 3.3, we constructed �ve new probes whose target shi�s were placed
at the positions marked by the black vertical lines (with arrows) in Sec. 4.2(a). A�er new target
shi�s were selected from the k-means clustering of the computed eigenvalues, some of the inserted
probes were mapped to the new shi�s and some of them were deleted in the third SCF iterations.
In all subsequent SCF iterations, no missing eigenvalue was detected, and SCF convergence was
achieved in 10 iterations.

While the inserted new probes captured all the missing eigenvalues, there is an associated
cost/penalty for this insertion as shown in Fig. 16b(b). Because the insertion of new probes
essentially amounts to a recalculation of part of the spectrum in the second SCF iteration, the wall
clock time required to complete that iteration was doubled. However, we should point out that this
type of probe insertion is rare in our experiments. Because it only occurs in early SCF iterations,
the extra cost is typically amortized over the remainder of the SCF procedure.

5.4 Probe Basis Dimension
As was discussed in Sec. 2.1, the dimension of the basis used for the shi�-invert subspace iterations
need only be at least the number of desired eigenpairs in the neighborhood of a particular spectral
shi�s. In practice, the basis dimension should be chosen to be slightly larger to enable faster
convergence. However, as the basis dimension increases, the computational time required to
perform the shi� invert subspace iterations also increases due to the need to solve linear systems
with a larger number of right hand sides. In Fig. 17 we examine the e�ects of basis dimension
on the convergence of the subspace iterations as well as on the computational time required to
perform the subspace iterations for the Graphene test case.

ACM Transactions on Mathematical So�ware, Vol. 0, No. 0, Article 0. Publication date: March 20xx.



Shi� Selection for Parallel Shi�-Invert Spectrum Slicing 0:29

−0.75 −0.7 −0.65 −0.6

λ

Original Shi�s Added Shi�s
Original Ritz Values Added Ritz Values

(a)

0 1 2 3 4
0

5

10

15

20

25

SCF Iteration

W
al

lt
im

e
/s

(b)

Fig. 16. Example shi� insertion for the Graphene test case. The last slice of this test case was determined to
have missing eigenvalues per the slice validation scheme at SCF iteration 1. (a) shows the positions of the
inserted shi�s and the new slices and eigenvalues produced by this insertion. (b) shows the computational
required to perform the first 5 SCF iterations with this insertion.
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Fig. 17. The e�ects of the probe basis dimension on timings and convergence in the SISLICE method. Results
were obtained using the Graphene test case with 100 spectral shi�s. Timings (a) were obtained with Intel(R)
MKL on 32 Intel(R) Haswell threads. The convergence (b) is tracked as the largest residual norm for the first
spectral slice as a function of subspace iteration.

Figure 17a shows the increase in computational time required to perform the subspace iterations
as a function of basis dimension. All timing results were obtained using the Haswell partition of
the Cori Supercomputer (2x16 Intel(R) Xeon(TM) Processor E5-2698 v3 at 2.3 GHz) using Intel(R)
MKL to solve the linear systems and are representative of a single set of 4 subspace iterations. It is
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clear that even with a 10 fold increase in the basis dimension, the e�ect on overall timing for the
subspace iterations is negligible.

Figure 17b tracks the convergence of a particular spectral slice as a function of the number of
subspace iterations. Due to the nearly uniform distribution of the eigenvalues within the Graphene’s
spectrum, this slice is representative of the entire spectrum. �e shi� placement was chosen such
that each spectral probe is responsible for ∼ 10 validated eigenpairs. Unlike the e�ects on timing,
the convergence of the examined spectral slice is sensitive to the basis dimension; with small basis
dimensions (e.g. 25) yielding very suboptimal convergence results and large basis dimensions (e.g.
100-200) yielding much faster convergence. In practice, we have found that choosing k ≈ 10ne/ns
yields su�ciently fast convergence in most cases.

5.5 Parallel Scalability
In this section, we examine the parallel scaling behavior of the proposed SISLICE method. All
timing results were obtained using the Haswell partition of the Cori Supercomputer (2x16 Intel(R)
Xeon(TM) Processor E5-2698 v3 at 2.3 GHz).

Figure 18 demonstrates the strong scaling of a single SCF iteration of the SISLICE method using
the Graphene test case. �e calculation was performed using 64 shi�s and 4 shi�-invert subspace
iterations per shi� on a basis of k = 100. �e distribution was chosen such that each independent
set of LDLT factorizations and shi�-invert subspace iterations utilized 32 threads using the Intel(R)
MKL library. �e wall time is given in seconds and includes the timings for the LDLT factorization,
shi�-invert subspace iterations, Rayleigh-Ritz calculation and probe synchronization (see Sec. 4.1).
To demonstrate the e�ects of the probe synchronization on the overall time, timings are shown
with and without the probe synchronization. If we neglect the probe synchronization, we see linear
strong scaling. �is is to be expected as there is no communication between MPI ranks except
for the synchronization. If we include the synchronization, we begin to see the overhead of this
procedure at 32 nodes. However, it is clear from this example that this overhead manifests as a
prefactor rather than e�ecting the overall scaling.
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Fig. 18. Strong scaling of the SISLICE method for a single SCF iteration of the Graphene test case using 64
spectral shi�s and 4 shi�-invert subspace iterations per shi� on a basis of k = 100. The open circles represent
the overall wall time to complete a single SCF iteration (including probe synchronization) of the SISLICE
method. The triangles represent the wall time to perform the shi�-invert subspace iterations in parallel. The
dashed line represents linear scaling.
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Figure 19 demonstrates the strong scaling of the SISLICE method compared to ScaLAPACK and
ELPA on a large number of processors. For this purpose, we examine the Si10H16 matrix from
the University of Florida Sparse Matrix Collection (Davis and Hu 2011) (N = 17077) which is
representative of a �nite di�erence, pseudo-potential density functional theory calculation using
the PARSEC so�ware package (Kronik et al. 2006). Unlike the previously examined Silane and
Graphene test cases, Si10H16 is sparse; yielding only 87592 non-zero elements (99.7% zero). As such,
we employ the SuperLU DIST distributed-memory parallel linear solver to perform the shi�-invert
subspace iterations for this test case. For this example, we compare the full diagonalization of the
Si10H16 matrix using ScaLAPACK and ELPA with the partial diagonalization of the lowest 1000
eigenvalues using the SISLICE method (ns = 100, 4 subspace iterations, k = 100). A block size of
MB = 128 was used for all ScaLAPACK and ELPA diagonalizations. �e distribution was chosen
such that threads were not utilized for intranode parallelism, i.e. a 1:1 processor-to-MPI rank ratio.
Timings for ScaLAPACK and ELPA represent the utilization of the entire process grid to perform
the diagonalization. Timings for the SISLICE method utilize a subset of the processors to perform
the shi� invert subspace iterations (64 / 256 ranks for the 8x8 / 16x16 grids, respectively) and include
the time required to perform the probe synchronization. As can clearly be seen, both ScaLAPACK
and ELPA drastically outperform the SISLICE method using a small number of computational
resources. However, both the strong scaling of ScaLAPACK and ELPA stagnates for large numbers
of processors, whereas the SISLICE method continues to exhibit linear scaling. With a very large
number of processors (25,600), the SISLICE method using a 16x16 process grid outperforms the
best ELPA time by a factor of 2.3x.
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Fig. 19. Strong scaling comparison of ScaLAPACK / ELPA direct diagonalization and the SISLICE method
using SuperLU for the Si10H16 test case. The ScaLAPACK and ELPA calculations were performed using a
square process grid with a distribution blocking factor of MB = 128. Timings for ScaLAPACK and ELPA
represent the full diagonalization using all available processors. The SISLICE calculations were performed
using 100 shi�s with 4 subspace iterations per shi�, and a basis of dimension k = 100. SuperLU was used to
perform the distributed-memory parallel factorization and linear system solves for the shi�-invert subspace
iterations on a square subset of the process grid: 8x8 and 16x16, respectively. Timings for the SISLICE
calculations include the times required to perform the distributed-memory parallel factorization, linear solves,
local Rayleigh-Ritz calculation and spectral probe synchronization.
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6 CONCLUSION
In this work, we have developed the SISLICE method: a robust and e�cient parallel shi�-invert
spectrum slicing strategy for self-consistent symmetric eigenvalue computation. �e novelty of
the SISLICE method is in its shi� selection and migration strategies which allow for only minimal
communication requirements in its distributed-memory parallel implementation. Like all spectrum
slicing methods, the SISLICE method partitions a spectral region of interest into non-overlapping
intervals which are then treated independently. However, unlike previous and contemporary slicing
methods which rely on sequential shi� placement to partition the spectral region of interest, the
SISLICE method utilizes DOS estimates to form the entire set of spectral slices at once. �is strategy
allows for maximal concurrency with minimal communication overhead. As the desired eigenvalues
of the considered matrix pencils are dynamic throughout the SCF procedure, the SISLICE method
employs a shi� migration strategy based on k-means clustering which allows for tracking of the
relevant eigenvalues throughout the SCF procedure without the need to recompute the costly DOS
estimation at each iteration.

We have demonstrated the robustness and parallel e�ciency of the SISLICE method for a
representative set of SCF eigenvalue problems commonly encountered in electronic structure
theory in Sec. 5. In particular, we have demonstrated that the k-means shi� migration yielded
noticeable convergence improvements in spectral regions with a highly irregular distribution of
eigenvalues (such as the one exhibited for the Silane test case).

From the perspective of performance, the SISLICE method was demonstrated to exhibit linear
strong scaling for medium to large problem dimensions up to tens of thousands of processors. �is
scaling behavior far exceeds those exhibited by distributed direct eigensolvers such as those in
ScaLAPACK and ELPA, despite the la�er being more performant at low processor counts. Further,
we have demonstrated that the main communication requirement, the synchronization of Ritz
values and residual norms across the distributed network, yields only a small prefactor in terms of
the overall computational time and does not yield a noticeable change in overall scaling.

Despite the demonstrated success of the proposed SISLICE method, there are several topics which
were not addressed in this work that should be addressed to fully demonstrate the e�ectiveness of
the method in real applications. �e �rst is the integration of the SISLICE method into an actual
SCF code such as NWChemEx, SIESTA, etc. While our results have demonstrated the usefulness
of the SISLICE method for pregenerated matrix sequences, the accuracy of the eigenvectors at
any particular SCF iteration will in�uence the overall convergence of the SCF. �is topic will be
addressed in future work.

Another topic which should be explored is the integration of the SISLICE method with other
approximate eigenvalue schemes, such as polynomial �ltering, etc. �is is of particular interest
for spectra which exhibit similar characteristics as the all-electron Silane test case which admits
several isolated eigenvalue clusters in the lower region of the spectrum. Due to the isolated nature
of these clusters, they would likely be be�er addressed by polynomial �ltering, whereas the larger
“clusters” of eigenvalues higher in the spectrum are well addressed by SISLICE. �is topic will also
be addressed in future work.
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