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ABSTRACT: Solutions of the real-time time-dependent density functional
theory (RT-TDDFT) equations provide an affordable route to under-
standing the electronic dynamics that underpins many spectroscopic
techniques. From the solutions of the RT-TDDFT equations, it is possible
to extract optical absorption and circular dichroism spectra, as well as
descriptions of charge transfer and charge transport dynamics. In order to
apply RT-TDDFT to increasingly large systems, it is necessary to develop
methods to overcome computational bottlenecks. One current bottleneck is
the N( )3 cost required to form the time propagator for the RT-TDDFT
equations, because of the full matrix diagonalization that is required at each
time step. Here, we present a (semi)diagonalization-free formation of the propagator based on a nonrecursive Chebyshev
polynomial expansion. The Chebyshev expansion relies only on matrix multiply operations which have lower computational cost
and are furthermore extremely parallelizable. We demonstrate the accuracy and stability of the Chebyshev approach, and then
discuss the favorable scaling of the method, compared to traditional approaches based on matrix diagonalization. The Chebyshev
expansion method should enable the application of RT-TDDFT methods to large systems such as nanocrystals and biomolecules.

1. INTRODUCTION

Electronic motion is fundamental to our understanding of
chemical and physical phenomena. From electronic reorganiza-
tion upon photoinduced charge transfer in the chromophores
of solar cells to the ultrafast excitonic dynamics in nanocrystal-
line materials, electron dynamics lies at the heart of chemistry.
As such, to properly model these phenomena theoretically, we
must often venture into the time domain to capture the physics
necessary to completely understand the problem at hand. In the
nonrelativistic treatment of quantum systems, quantum
dynamics is governed by the many body time-dependent
Schrödinger equation, given in atomic units (a.u.) by

∂ |Ψ ⟩ = |Ψ ⟩i t t t( ) ( ) ( )t (1)

where |Ψ(t)⟩ is the time-dependent many-body wave function
and t( ) is the time-dependent Hamiltonian. One may, in
principle, solve eq 1 simultaneously for all of the electronic
degrees of freedom to obtain the electronic dynamics within the
frozen nuclei extension of the Born−Oppenheimer approx-
imation exactly. However, this approach is intractable for
quantum systems exceeding more than a few particles. Within
the mean-field description of the many-body wave function of
Hartree−Fock (HF) or Kohn−Sham (KS) density functional
theory, one may describe the electronic dynamics of a quantum
system via (real-time) time-dependent Hartree−Fock (RT-
TDHF)1−4 or time-dependent Kohn−Sham density functional
theory (RT-TDKS),5−12 respectively. In this treatment,

electronic dynamics is governed by the Liouville−von
Neumann equation,

∂ =i t t tD F D( ) [ ( ), ( )]t (2)

where D(t) is the time-dependent single particle density matrix
(1PDM) and F(t) is the time-dependent Fock (Kohn−Sham)
matrix of HF (KS) theory. Both D(t) and F(t) are taken to be
expressed in an orthonormal basis.
Integration of eq 2 formally scales as N( )4 , where N is the

number of basis functions used to describe the quantum
system. This steep scaling is due to the high computational cost
of the formation of the Fock/Kohn−Sham matrix, which must
be performed for each time point,

η η= + + − +t t t t tF h J D K D V D( ) ( ) [ ( )] (1 ) [ ( )] [ ( )]xc
(3)

where h(t) is the core Hamiltonian, J[D(t)] and K[D(t)] are
the density-dependent Coulomb and exchange operators, and
Vxc[D(t)] is the KS exchange-correlation contribution to the
Kohn−Sham matrix. η ∈ ⊂ [0, 1] is a continuous and free
parameter that spans HF (η = 0) and pure-KS (η = 1) with
η∈ (0,1) denoting hybrid KS theories. Much work has gone
into reducing the scaling of the Fock/Kohn−Sham matrix
formation, achieving near linear-scaling with system size.13−22

Even with an asymptotically linear-scaling Fock formation,

Received: July 12, 2016
Published: October 17, 2016

Article

pubs.acs.org/JCTC

© 2016 American Chemical Society 5333 DOI: 10.1021/acs.jctc.6b00693
J. Chem. Theory Comput. 2016, 12, 5333−5338

D
ow

nl
oa

de
d 

vi
a 

L
A

W
R

E
N

C
E

 B
E

R
K

E
L

E
Y

 N
A

T
L

 L
A

B
O

R
A

T
O

R
Y

 o
n 

A
ug

us
t 1

7,
 2

01
8 

at
 1

6:
55

:4
4 

(U
T

C
).

 
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

 

pubs.acs.org/JCTC
http://dx.doi.org/10.1021/acs.jctc.6b00693


however, traditional approaches to the integration of eq 2 still
carry a relatively steep scaling of N( )3 , because of the
presence of a matrix diagonalization step at each time point.
All techniques to integrate eq 2 require the formation of a

time propagator, U(t; Δt), that is, in some way, related to the
matrix exponential of the Fock/Kohn−Sham matrix,

Δ = β− Δt tU( ; ) e i t tF( ) ( ) (4)

where Δt is a time step, and β(Δt) is some function of Δt that
is dependent on the integration method. β(Δt) is a simple
function that is often Δt itself for many integration techniques,
such as forward-Euler, but is, at times, a scalar multiple of Δt,
such as 2Δt in the modified-midpoint unitary transformation
(MMUT)4,13,23,24 technique that is the focus of this article. The
steep N( )3 scaling of dense matrix diagonalization greatly
hinders the application of RT-TDHF and RT-TDKS to many
large systems, such as nanocrystals or biomolecules. In addition,
while the Fock/Kohn−Sham formation is easily parallelized,
parallelization of matrix diagonalization is nontrivial.
It is known that matrix diagonalization can be avoided in the

evaluation of matrix exponentials,25−27 for example, the Pade ́
approximation or various polynomial expansions, such as the
Taylor and Chebyshev expansions. Polynomial expansions offer
an attractive alternative to other methods as they only involve
general matrix multiply (GEMM) operations. GEMM oper-
ations offer multiple advantages over matrix diagonalizations,
namely, in scaling and parallelization. GEMM operations offer
an improved scaling28,29 of N( )2.807 , which leads to a sizable
improvement over the diagonalization performance for large N.
Crucially, while diagonalization suffers in the age of high-
performance computing, GEMM operations thrive as they are
an highly parallelizable task.30,31 In this article, we explore the
rapidly converging Chebyshev expansion25−27,32−34 as an
alternative to matrix diagonalization in the evaluation of eq 4.
While the introduction of the Chebyshev expansion (or
variants) is not completely new to the realm of quantum
simulations,27,34−36 its practical implementation and use in the
field of ab initio real-time simulations has been limited. In this
work, we demonstrate the general effectiveness of the
Chebyshev expansion for RT-TDDFT and RT-TDHF.

2. METHODOLOGY
2.1. RT-TDDFT Using Chebyshev Expansion. We

examine the propagation of the electronic degrees of freedom
via a modified midpoint unitary transformation (MMUT)
method.4,13,23 In an orthonormal basis, the time evolution of
the one particle density matrix may be obtained via a unitary
transformation evaluated at the midpoint of the time interval,

= Δ Δ+ −
†t t t t t tD U D U( ) ( ; ) ( ) ( ; )k k k k1 1 (5)

where Δt is the time step of the MMUT integrator and tk is the
midpoint of tk+1 and tk−1. Given that U is unitary, eq 5
maintains the idempotency of the density matrix. In the
MMUT, the propagator is given in terms of the Fock/Kohn−
Sham matrix via the exponential

Δ = − Δ ·t tU( , ) ek
i t tF2 ( )k (6)

Once the density matrix has time-evolved to some time-point
tk+1 via eq 5, the Fock/Kohn−Sham matrix may be updated (eq
3) to form a new propagator (eq 6). This new propagator may
then be used to again propagate the density matrix in time.

The propagator of eq 6 can be constructed via diagonaliza-
tion of the Fock/Kohn−Sham matrix,

ε= †t t t tF C C( ) ( ) ( ) ( ) (7)

Δ = ε− Δ †t t t tU C C( ; ) ( )(e ) ( )i t t2 ( )
(8)

where C(t) and ε(t) are the time-dependent orthonormal
molecular orbitals (MOs) and diagonal matrix of canonical MO
energies, respectively. This approach is, subject to the
numerical precision, exact, but carries an N( )3 computational
scaling and is inefficiently parallelized. An alternative approach
is to expand the unitary propagator eq 6 in a polynomial series
and utilize the highly efficient matrix product operations.
However, such a polynomial expansion is often associated with
a large computational prefactor, especially when high-accuracy
solutions or higher-order terms in the expansion are needed. In
the following section, we present an efficient Chebyshev
expansion to construct the unitary propagator matrix.

2.2. Efficient Chebyshev Expansion of the Matrix
Exponential. The Chebyshev expansion of the exponential of
some complex N × N matrix, X, may be written in terms of the
Chebyshev polynomials of the first type:

∑ α α= − ̃ ̃ ∈α−

=

∞
+i a T Xe ( ) ( ) ( )i

n

n
n n

X

0 (9)

Here, Tn(ω) is the set of Chebyshev polynomials of the first
type, subject to the condition that the eigenvalues of ω are
bounded by the unit disk. For a complex general linear matrix,

∈ NX GL( , ), this condition can be achieved through a
general linear to unit linear transformation of X, i.e., X̃ = f(X),
where f N: GL( , ) → NUnL( , ). Here, we have taken

NUnL( , ) encapsulate the properties given for ω above.
and α̃ are, respectively, a normalization constant and scaled
prefactor that correspond to f. The choice of f and,
consequently, and α, are free, given certain criteria, and
will be explored later in this article.
an represents the set of expansion coefficients corresponding

to the Chebyshev polynomials at each order, given by25−27,32,33

δ= −a x J x( ) (2 ) ( )n n n0 (10)

where Jn is the set of Bessel functions of the first type,

∑= −
! + !=

∞ +
⎜ ⎟
⎛
⎝

⎞
⎠J x

m m n
x

( )
( 1)
( ) 2n

m

m m n

0

2

(11)

In practice, one must truncate the Chebyshev expansion at
some finite order K, in the evaluation of the complex matrix
exponential. Herein lies the power of the Chebyshev expansion
over other polynomial expansions, as it represents a near-
optimal polynomial expansion for functions with rapidly
converging power series.32,37 The required Chebyshev
polynomials may be evaluated recursively using the generating
equations

ω

ω ω

ω ω ω ω

=

=

= −− −

T

T

T T T

I( )

( )

( ) 2 ( ) ( )n n n

0

1

1 2 (12)

where I is the identity matrix. The implementation of this
recursion up to order K may be efficiently implemented with K
dense matrix multiply operations. Efficient implementations of
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recursive Chebyshev have been applied to real-time TDDFT
electronic dynamics.34−36

In this work, we propose a more efficient nonrecursive
approach via a general unraveling of the Chebyshev polynomial
recursion to obtain coefficients for the matrix powers directly.
Equation 9 can be rewritten in terms of a matrix power series,

∑ α= ̃ − ̃α−

=

c iXe ( )( )i

k

K

k
kX

0 (13)

where ck represents a set of coefficients, specific to the
Chebyshev polynomials, that expand the matrix powers of −iX̃.
Given the expressions in eqs 9−11, ck can be computed as38,39

∑ δ ζ= −
=

c x n k J x( ) (2 ) ( , ) ( )k
n k

K

n n0
(14)

ζ =

+ = <

= =

+ −

−

−

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

n k

k n n k

k n

n
k

n k

k

( , )

0 ( ) odd or

1 0 and even

2
2

1

1
else

k 1

(15)

For an even truncation order, the range of matrix powers may
be bisected to obtain

∑ ∑α α= ̃ − ̃ + − ̃ ̃ − ̃

=

α−

= =
+c iX iX c iX

K

e ( )( ) ( ) ( )( )

( even)

i

k

K

k
k K

k

K

k K
kX

0

/2
/2

1

/2

/2

(16)

This result is trivially extended to odd truncation orders.
Implementation of eq 16 requires the same amount of storage
as eq 12, only it requires half of the dense matrix multiply
operations, compared to the recursive formation of the
Chebyshev polynomial. This reduction effectively cuts the
prefactor of the evaluation of the complex matrix exponential in
half.
Note that the expression in eq 16 is completely general to

any polynomial expansion, including that of the Taylor
expansion, given some explicit form of the expansion
coefficients. Equation 16 may be considered to be a variant
on scaling and squaring, which is standard practice in the
polynomial expansion of matrix functions to reduce error
propagation.40 In essence, the purposed algorithm in this work
has made it possible to seamlessly interface any implementation
of a polynomial expansion of the quantum propagator (given
the form of eq 13) with the Chebyshev expansion with only a
redefinition of the expansion coefficients.
2.3. Practical Numerical Implementation. By choosing

α = 2Δt and X = F in eq 16, the unitary propagator (eq 6) can
be constructed using the Chebyshev expansion. In order to
ensure that the spectral range, ε ̃, of the Chebyshev root matrix
X̃ satisfies the −1 ≤ ε ̃ ≤ 1 condition, a general linear to unit
linear transformation of the Fock/Kohn−Sham matrix must be
carried out, X̃ = f(F). The scaling function f may take any form
that maps the spectral range of F to some subset of the unit
disk. Out of simplicity, we have chosen the form27

γ
γ ε

α γ

̃ = = − −

̃ = Δ

= γ ε− + Δ

X f

t

F F I( )
1

( ( )

e i t

min

2 ( )min (17)

where γ is a scaling factor that is chosen to be greater than the
magnitude of the spectral range of F, i.e., γ > (εmax − εmin),
where εmax and εmin are the upper and lower bounds of the
eigenspectrum of F. In our experience and extensive testing, we
have found the following definitions for the scaling parameters
that properly suit the needs of the majority of MMUT
calculations:

γ ε ε= −3
2

( )max min (18)

where εmax and εmin are the maximum and minimum MO
energies of F.
The transformation function defined in eqs 17 and 18, in

principle, requires the on-the-f ly evaluation of the upper and
lower bounds of the Fock/Kohn−Sham matrix. This can be
achieved using a Davidson-like iterative algorithm,41−44 or
direct diagonalization of the matrix. The latter seems
counterintuitive as the purpose of using polynomial expansion
is to avoid the direct diagonalization of the Fock/Kohn−Sham
matrix. However, for cases with weak or no external
perturbation time-dependent perturbations, where eq 18 is
able to ensure the existence of general linear to unit linear
transformation of the Fock/Kohn−Sham matrix throughout the
simulation, one only needs a single diagonalization step to
obtain the eigenspectrum of the perturbation-free Fock/Kohn−
Sham matrix.
In cases where an external perturbation (e.g., intense laser

field) can lead to large fluctuations in the eigenspectrum of the
Fock/Kohn−Sham matrix, such a simple algorithm may not be
sufficient. In such cases, the eigenspectrum of the Fock/Kohn−
Sham matrix can be evaluated at some regular interval
throughout the simulation, e.g., performing a full diagonaliza-
tion of the time-dependent Fock/Kohn−Sham matrix to
update the scaling parameters in eq 18. As shown later, a
performance gain is still obtained over full-diagonalization-
based methods, even for relatively frequent updates of the
scaling parameters.

3. BENCHMARK AND DISCUSSION

The Chebyshev expansion of the MMUT time propagator has
been implemented in a locally modified version of the Gaussian
Development Version45 suite of programs. In this section, we
demonstrate the performance increase of the Chebyshev
expansion over the eigen-decomposition approaches. All
calculations performed in this benchmark study were carried
out on a dual Intel(R) Xeon(R) (2 × 8 NUMA cores, 2.6 GHz)
CPUs with 64 GB of RAM. Level-3 BLAS parallelism was
achieved through ATLAS. The truncation order of the
Chebyshev expansion was adjusted until agreement, with
respect to the eigen-decomposition reference, was achieved
up to a tolerance. For the systems studied, the Chebyshev
expansion was found to truncate to desired (10−10) accuracy
within 16 terms (9 GEMM dense matrix multiply operations)
with α̃ ≈ 1.2, as the power series expansion coefficients
decrease monotonically for a given eigenspectrum. Throughout
this section, all quantities will be given in their respective
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atomic units: energy (Eh), electric field (Eh/(ea0)), time (ℏ/Eh),
and frequency (Eh/ℏ).
3.1. Performance Benchmark. To illustrate the perform-

ance of the Chebyshev expansion, RT-TDKS calculations were
performed on alkane chains of increasing length using an
MMUT integrator. All calculations were performed using the
RT-TDB3LYP/6-31G(d) level of theory,46−50 in the presence
of a far off-resonant (ω = 0.2 a.u.) oscillatory electric field of
amplitude 0.05 a.u., using a reasonably modest time step of 0.05
a.u. for 1000 time steps. Although excellent energy conservation
was achieved with these benchmark systems, even with a single
diagonalization step to recalculate the parameters in eq 17
throughout the MMUT integration, calculations were also
performed with the parameters being recalculated to indicate
the effect of intermittent eigen-decomposition on the perform-
ance of the Chebyshev expansion.
A summary of the computational acceleration may be seen in

Figure 1. In these benchmark simulations, TCheb
N denotes the

total wall-clock time of the simulation using Chebyshev
expansion with a total of N number of eigen-decomposition
operations in the simulation to recompute the parameters in eq
17. Performance enhancement over the full diagonalization/
eigen-decomposition based method can be seen for all of the
performed simulations at all degrees of parallelism, indicating
that the Chebyshev expansion is a suitable alternative, even for
computationally serial simulations. Figure 1a shows that, for the
largest simulations performed, a computational acceleration of
>100% is regularly observed, with the most marked improve-
ment peaking just under 500%.
Figure 1b shows that, while the introduction of intermittent

diagonalization throughout the propagation does introduce
additional computational cost, the slowdown is small, compared
to the complete eigen-decomposition method with NCPU = 16.
In the worst possible scenario in the given set of simulations
(diagonalization every five time steps, TCheb

200 ), the slowdown is
just shy of 2× over the TCheb

1 Chebyshev simulation. Comparing
this with the near 6× slowdown over the eigen-decomposition,
even frequent restart of the Chebyshev time propagation is a
marked improvement over traditional methods, as might be
needed by simulations that involve intense or frequently
oscillating perturbations.
3.2. Stability Case Study: H2

+ Rabi Oscillation. A classic
indication of time-propagation stability is that of correct
prediction of the coherent Rabi oscillation (i.e., complete
population inversion) of a two-state model problem.4,51−57 As
has been examined in previous work,4 we have chosen to
perform RT-TDHF on the single electron H2

+ model system
with a STO-3G basis, as it constitutes an ideal two-state
problem with an analytic solution with which to compare. With
STO-3G at the equilibrium geometry (RH−H = 1.0603 Å), the
resonant excitation frequency is ω = 0.4746 a.u. We apply a
sinusoidal electric field with frequency ω and a constant
envelope amplitude of 0.05 a.u. to H2

+ at a constant MMUT
time step of 0.05 a.u. for a total duration of 200 a.u. To follow
the Rabi oscillation dynamics, we analyze the time evolutions of
the molecular orbital occupations, which are calculated by the
projection of the time-dependent density matrix onto the initial
ground-state field-free orbital space:4

= †n t t t tC D C( ) ( ) ( ) ( )i k i k i0 0 (19)

where ni is the occupation of the ith molecular orbital. The
MMUT results for this time simulation are shown in Figure 2.

The Rabi oscillation of H2
+ represents a very challenging case

for the Chebyshev expansion, as the eigenspectrum of the Fock
matrix has a large oscillation amplitude. The scaling function, as
proposed in eq 18, seems to be able to handle such a
challenging situation quite well. The results for the Chebyshev
expansion method are almost identical to that the eigen-
decomposition method. In Figure 2b, even with only a single
eigen-decomposition, the Chebyshev expansion only gives rise
to a very small deviation from the exact result. This indicates
that the Chebyshev expansion is a suitably stable alternative for
eigen-decomposition.

4. CONCLUSION
In this study, we presented a nonrecursive Chebyshev
expansion of the complex matrix exponential as an alternative
of eigen-decomposition-based methods. Specifically, we have
examined the application of this expansion to the evaluation of

Figure 1. Comparison of the computational cost of the eigen-
decomposition and the Chebyshev expansion methods for linear
alkane chains, CnH2n+2. All calculations were performed with RT-
TDB3LYP/6-31G(d) level of theory with Δt = 0.05 a.u. for 1000
steps. For all of the species in this test, α̃ ≈ 1.2. Fractional
computational acceleration over the full eigen-decomposition-based
method is plotted as a function of the number of basis functions. All
results are given in terms of the ratio (TDiag − TCheb

N )/TCheb
1 , where

TDiag denotes the wall-clock computational time for the eigen-
decomposition method and TCheb

N denotes the computational time
for the Chebyshev expansion with N numbers of eigen-decomposition
operations of the Fock/Kohn−Sham matrix during the simulation.
Larger positive values means greater computational acceleration. (a)
Parallel performance of MMUT with Chebyshev expansion TCheb

1

compared to a full eigen-decomposition-based method TDiag (NCPU is
the number of CPU cores). (b) Performance of MMUT with
Chebyshev expansion with different number of intermediate eigen-
decomposition operations TCheb

N during the simulation, compared to a
full eigen-decomposition-based method TDiag with NCPU = 16.
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the time propagator for MMUT-RT-TDHF/TDKS simulations
and its performance and stability, relative to eigen-decom-
position. We have shown in our results that the Chebyshev
expansion provides a suitably stable alternative to the eigen-
decomposition method for evaluating the complex matrix
exponential with the potential for implementation on high-
performance computing platforms.
Although the nonrecursive Chebyshev expansion is, in the

current formulation, dependent explicitly on some metric
dependent on the eigenspectrum of the Fock/Kohn−Sham
matrix, we have shown that with intermittent updates of the
Chebyshev scaling parameters, excellent agreement with the
eigen-decomposition can be achieved. Even for cases that
involve large oscillations of the Fock/Kohn−Sham matrix, such
at the Rabi oscillation for minimal basis H2

+, very good
agreement can be achieved, even for large time gaps between
updates of the Chebyshev scaling parameters. This indicates
that the Chebyshev expansion is suitably stable for the purpose
of MMUT-RT-TDHF/TDKS.
In the performance benchmark, we have shown that the

nonrecursive Chebyshev expansion outperforms the eigen-
decomposition method for evaluation of the time propagator
for reasonably sized molecules at all levels of parallelism. This

performance gain scales very well with system size, peaking at
an acceleration of ∼6× for the largest molecular system tested.
The performance gain achieved with the nonrecursive Cheby-
shev expansion holds the potential of allowing routine
treatment of systems which eigen-decomposition renders
impractical, such as large biomolecules or nanocrystals.
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104, 4685.
(16) Rudberg, E.; Sałek, P. J. Chem. Phys. 2006, 125, 084106.
(17) White, C. A.; Head-Gordon, M. J. Chem. Phys. 1994, 101, 6593.
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