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ABSTRACT: With the recent introduction of the particle−
particle random-phase and Tamm−Dancoff approximations to
ab initio theory, routine queries of traditionally difficult
systems, such as diradicals and doubly excited states, have
been made possible. However, although a wealth of inquiry has
been directed to investigating these methods, the current
formulations have been restricted to spin-collinear systems,
leaving the methods incapable of treating noncollinearity and
spin−orbit relativistic effects in excited states. In this work, we
extend the particle−particle Tamm−Dancoff approximation to
suit two-component Hamiltonians to explicitly treat relativistic
effects in excited states. After reviewing the theory and
computational implementation, we demonstrate the accuracy
of this extension by evaluating the fine structure splittings some of atomic and molecular systems.

1. INTRODUCTION
The ability to accurately predict and characterize the electroni-
cally excited states of molecular systems is paramount to a
complete understanding of many chemical phenomena. As
such, excited states are the central focus of many fields of
physical chemistry, the most prominent of which being
spectroscopy. Due to this centralized importance and the
need to efficiently and accurately predict excited-state proper-
ties, much effort has been devoted over the years toward the
modeling of excitation energies and oscillator strengths.
Recently, the particle−particle random-phase approximation

(pp-RPA) and Tamm−Dancoff approximation (pp-TDA),
which have been standard trade tools of the nuclear physics
community in the treatment of the many-body correlation
energy for low matter density systems,1 have been extended to
the treatment the correlation energy and excitation energies of
quantum molecular systems within a finite basis set.2−8

Although this introduction into the quantum chemistry
community is relatively recent, a wealth of effort has been
afforded to the rigorous investigation of these methods in a
variety of different contexts, involving the evaluation of
excitation energies,2−4 excited-state properties and geometry
optimizations,9 and the treatment of nonadiabatic phenomena
such as nonadiabatic dynamics10,11 and the description of
conical intersections.12 So far in their development, however,
these methods have seen application only in molecular systems
using strictly spin-collinear references, disallowing extension to
systems with spin-noncollinear states, such as those that arise in
spin-frustrated systems or whenever spin−orbit effects are
included in the treatment. To the best of our knowledge, there
has been no previous work to extend the implementation pp-
TDA formalism to two-component or any relativistic wave
functions for molecular systems.

Recent years have also seen new developments in the realm
of relativistic quantum chemistry. Relativistic effects, while
often neglected in most standard treatment of electronic
structure, can have profound consequences in chemical
systems.13 Scalar relativistic effects cause the contraction of
the core electron shells of heavy atoms, but perhaps of even
more consequence is the introduction of spin couplings in the
Hamiltonian. Spin−spin and spin−orbit interactions can affect
the electronic spin dynamics even in light atoms, and a direct
consequence of these couplings on excited states is the loss of
degeneracies of spin-eigenstates, giving rise to fine structure
splittings (FSS) in atoms and molecules with symmetry-
induced degeneracies. It is therefore desirable to develop
accurate and cost-effective relativistic electronic structure
methods able to model such effects.
In this work, the pp-TDA formalism has been extended to

two-component relativistic Hamiltonians, utilizing the single
Slater determinant description for the two-component wave
function. The presented formalism can, however, also be
employed in the case of spin-frustrated systems with a
noncollinear ground state even in the absence of relativistic
effects.

2. THEORY

In the following presentation, we will use indices i, j, ... to refer
to occupied molecular orbitals (MO), a, b,... to refer to virtual
orbitals, and p, q, ... to refer to any orbital regardless of
occupancy. All MOs are expanded in terms of real atomic-
orbitals (AO).
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2.1. Exact Two-Component Method. Relativistic quan-
tum chemistry is based on the solution of the Dirac equation in
lieu of the nonrelativistic Schrödinger equation.14,15 The one-
electron Dirac Hamiltonian takes the following form

σ σ

σ σ
=

⃗· ⃗

⃗· ⃗ −
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2
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(1)

where V collects all scalar potential terms, p ⃗ is the momentum
operator, σ⃗ is a vector whose components are the Pauli
matrices, and σ0 is the identity matrix of rank two. The
relativistic wave function is separated into its large and small
components. In the nonrelativistic limit, the large component
approaches the nonrelativistic wave function while the small
components goes to zero. Each component is separated into
inseparable spin-up and spin-down parts
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Although eq 1 may be solved for the four-component wave
function directly, it is often advantageous from a practical as
well an aesthetic perspective to transform the full four-
component relativistic equations into a two-component form
that closely resembles those found in nonrelativistic theory.
Such a transformation allows one to employ the machinery of
standard nonrelativistic electronic structure methods with only
minor modifications.16−20 In general, such a transformation is
achieved by means of a unitary transformation, , such that

ψ
ψ
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Here, the two-component transformed wave function |ψ2c⟩ is an
eigenstate of the transformed Hamiltonian operator H+. The
exact transformation for the full equation including the two-
electron terms cannot, however, be found in most practical
cases; therefore, one must introduce approximations for the
decoupling of the large and small components. Several types of
such decoupling methods have been described over the years.
In this work, we employ only the exact two-component method
(X2C), for which the precise form of the transformation matrix
may be found elsewhere.17,21−26 Here, the word “exact” refers
to the fact that X2C is based on the diagonalization of the full
one-electron four-component Hamiltonian, although the term
X2C may also be used in general to describe methods with an
effective Hamiltonian, such as the Dirac−Fock operator.26−29

Although the scalar potential, V, includes, for molecular
systems, both electron−nuclei attraction and the electron−
electron repulsion, a very common approximation is to neglect
the transformation of the two-electron terms of the Dirac
Hamiltonian. This approach greatly reduces the computational
cost associated with the transformation; however, it neglects
two-electron spin−orbit terms, some of which are of the same
order as their one-electron counterparts. While several methods
have been proposed to partially take two-electron spin−orbit
couplings into account,21,25,26,30,31 here we adopt a simple
approach that employs scaling factors applied to the one-

electron spin−orbit terms according to a scheme that depends
on the angular momentum of the function.32,33

The total effective two-component Hamiltonian obtained
with this procedure can be written in second quantized form

= + + ⟨ | ⟩† † †V h c c pq rs c c c c
1
2pq p q p r s qNN

X2C
(5)

where cp
† and cp are the one-particle creation and annihilation

operators that create and annihilate single-particle spinor Fock
states, respectively. VNN is the nuclear repulsion energy, hX2C is
the effective one-electron core Hamiltonian matrix, and ⟨pq|rs⟩
is the Coulomb electron−electron repulsion integral over
single-particle Fock states. The Einstein summation convention
is implied. Note that in eq 5 the molecular orbitals are spinor
quantities that cannot in general be classified as spin-up or spin-
down. When written in terms of the AO basis, {χ}, a generic
MO is expanded as
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If the wave function is treated as a single determinant, then one
may find the ground-state energy by means of the two-
component Hartree−Fock (X2C-HF) method. Note however
that once an approximate X2C decoupling is achieved, the
quasi-relativistic Hamiltonian can be used with most electronic
structure methods, provided a noncollinear formalism is
employed.16−19,26 If the Fock operator, F, and the electron
density, P, are expanded in a basis of real spinor atomic orbitals,
then one may write the X2C-HF equation as
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Where S is the AO overlap matrix, ε is a diagonal matrix that
collects the MO energies, J and K are the Coulomb and
exchange matrices, respectively. In this equation, relativistic
effects explicitly appear solely in the core Hamiltonian hX2C,
which has both a scalar and a spin−orbit components

σ σ= + ⃗·h h hX2C
0 s so (10)

Explicit two-electron relativistic and picture change effects are
neglected in the Coulomb repulsion term. In the following
section, we review the particle−particle formalism, keeping in
mind that eq 7 can be applied to a system with any number of
particles and thus allowing the application to reference shift of
the pp-TDA.

2.2. Particle−Particle Tamm−Dancoff Approximation.
The pp-TDA approximation is a non-particle-number conserv-
ing method; i.e., the excitation operator does not commute with
the number operator. To model a system with N electrons, it
starts from the wave function of the system with N − 2
electrons and adds (removes) the electrons back using an
appropriate “excitation” operator, for which an equation of
motion may be written and solved. The ground and excited
states of the N-particle system are thus obtained as “excited
states” of the N − 2 electron reference, and the desired
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excitation energies can be written as simple energy differences.
A general formalism for the treatment of the pp-TDA within a
finite basis of molecular spin-orbitals has described rigorously
elsewhere.2,3,5 Here, we review this formalism for completeness
and present the working expressions for the relativistic two-
component pp-TDA (X2C-pp-TDA) within the basis of MO
spinors as well as describe some caveats in the practical
application of this method within the context of a two-
component reference.
From an (exact) M-particle (in the case fermions) ground

state, |Ψ0
M⟩, all ground and excited N-particle states (|Ψ0

N⟩ and
|Ψn

N⟩, respectively) may be regarded as “excitations” through
the excitation operator = |Ψ ⟩⟨Ψ |†

n n
N M

0 ,

|Ψ ⟩ = |Ψ ⟩†
n
N

n
M
0 (11)

Given such an ansatz, it is possible to construct an equation-of-
motion (EOM)1 for †

n, affording some corresponding probing
de-excitation operator δ , to obtain the eigenenergies of |Ψn

N⟩

δ δ= −† †E E[ , [ , ]] ( )[ , ]n n
N M

n0 (12)

Equation 12 is formally exact and completely independent of
the chosen reference, provided one has access to the exact N-
and M-particle states. In practice, one may take the expectation
value of eq 12 using some approximate M-particle ground state,
|Φ0

M⟩, to obtain approximate energy differences between N- and
M-particle states given some explicit form of †

n. As has been
previously discussed, if the N and M systems differ by exactly
two particles (M = N − 2), then the X2C-pp-TDA equation
may be obtained by postulating that the excitation operator
take the form of all (unique) two-particle additions to obtain N-
particle states from an (N − 2)-particle reference

∑=†

<

† †X c cn
a b

ab
n

a b (13)

while the de-excitation operator takes the form

δ = c cb a (14)

Here, Xab
n is an expansion coefficient that describes the

contribution to the nth N-particle state of the addition of two
particles into single-particle virtual states, a and b, of the (N −
2)-particle ground state reference. By taking the expectation
value of eq 12 in a single X2C-HF Slater determinant given eq
13, one obtains the Hermitian eigenvalue problem of the X2C-
pp-TDA

∑ = Ω <
<

A X X a b( )
c d

ab cd cd
n

n ab
n

, (15)

Ω = − −E E( )n n
N N

0
2

(16)

δ δ= ϵ + ϵ + ⟨ ⟩A ab cd( )ab cd ac bd a b, (17)

while ⟨·∥·⟩ is the antisymmetrized two-electron integral tensor
in Dirac integral notation and ϵp is a spinor-orbital eigenenergy
obtained from solving the X2C-HF equation in eq 7. One may
obtain neutral N-particle excitations from the eigen spectrum of
eq 15 via a reference shift to the (N − 2)-particle system. By
variationally optimizing the wave function of the (N − 2)-
particle system via X2C-HF, both the N-particle ground- and
excited-state energies are obtained via

= + Ω−E En
N N

n0
2

(18)

Thus, the excitation energy between N-particle ground and
excited states, ωn

N, described via the X2C-pp-TDA may be
written as differences of the eigenenergies

ω = Ω − Ω >n( 0)n
N

n 0 (19)

These working expressions in eqs 15 and 17−19 are similar
to those previously expressed for the spin-collinear refer-
ence.2,3,5 The key difference is that all of the above equations
are expressed in the spinor basis within the X2C picture frame
rather than a spin-collinear spin−orbital basis and that the
orbitals have been optimized in the presence of relativistic
spin−orbit effects. Although eq 15 is a completely valid
expression for the spin-noncollinear as well as the spin-collinear
case, the spin-collinear case allows for significant simplification
due to the spin-orthogonality of the spin-aligned reference.2,4

3. RESULTS AND DISCUSSION

All calculations were performed with a locally modified version
of the Gaussian quantum chemistry suite of programs34 and
employed the taug-cc-pVTZ-DK basis set35 with the diffuse f-
functions removed. Relativistic effects were accounted for by
means of the variational X2C method.24,28,36−38 In order to
partially account for two-electron spin−orbit interaction in the
Hamiltonian, we employed a scheme based on the scaling of
the nuclear charge according to the angular momenta.32 The
atomic nuclei, rather than being treated as point charges, were
described using s-type Gaussian charge distribution.39,40 The
stability of the two-component ground-state wave function was
also tested before X2C-pp-TDA calculations were performed.41

3.1. Single Excitations. In order to highlight the capability
of the method to describe excited states within a relativistic
framework, in this section we look at the fine structure
splittings of some atomic systems. The presence of spin−orbit
couplings causes the total spin, S ⃗, and orbital, L⃗, angular
momentum operators to no longer commute with the
Hamiltonian; therefore, they no longer generate good quantum
numbers for the system. Instead, the total angular momentum J ⃗
= L⃗ + S ⃗ is the fundamental quantity that should be considered
when classifying the electronic states of the system. A direct
consequence of spin−orbit couplings on the spectra of atoms is
the lifting of some of the degeneracies that would be expected
in the ground or excited electronic states. We therefore
calculate the spectrum of selected atomic systems and compare
the obtained fine structure splittings with experimental
reference values42 to asses the accuracy of the method. In
this section, we restrict ourselves to states describable by single
excitations (with respect to the N-electron system), which
allows us to also compare our results with the results obtained
using the two-component particle-hole random-phase approx-
imation (X2C-ph-RPA), also known as time-dependent
Hartree−Fock method (X2C-TDHF), as well as with results
obtained using the X2C-ph-TDA method.43 Results for these
fine-structure splittings are collected in Table 1.
It can be seen that, in general, the three methods perform

similarly with respect to the reference values insofar as the
order of magnitude of the error is concerned. A general trend
may be observed in that the X2C-pp-TDA consistently
overestimates the splittings as the atomic charge of the
underlying nucleus increases. This effect is magnified in the
low energy transitions, whereas it is less apparent in the higher
energy transitions. This is due to the fact that the frontier
orbitals of the (N − 2)-reference being used become
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suboptimal in the proper description of the N-electron system
due to a contraction in the presence of higher nuclear charge.
This leads to an unphysically small energetic separation
between the frontier orbitals of the N-electron system, which
causes increasing errors due to an unphysical increase in mixing.
This problem is less obvious in higher energy excitation
because the higher lying orbitals are not as affected. These
orbitals are properly optimized in X2C-ph-RPA/TDA due to
the orbital occupancy of the resulting wave function. The
general out-performance of X2C-ph-TDA over X2C-ph-RPA
may be attributed to an over estimation of electron correlation
in the excited states via the RPA.44 The presence of the de-
excitation amplitudes in X2C-ph-RPA allows for an overmixing
for the low-lying excited states with the ground state, which
gives rise to an overestimate of the FSS, much the same as the
case for X2C-pp-TDA. The main advantage of the particle−
particle over the particle−hole formalism is that, in the former,
both the ground and electronically excited N-particle states are
described on equal footing with respect to correlation, being a
combination of several Slater determinants. Conversely, in the
ph-TDA or ph-RPA method, the ground state is described as a
single determinant, whereas excited states are described as
linear combinations of single excitations (and possibly de-
excitations). That being said, the excitation space spanned by
the X2C-pp-TDA solutions does not include all chemically
relevant excitations, many of which can be found using the
more traditional ph-RPA or ph-TDA methods. This is due to
the fact that the X2C-pp-TDA is, in its traditional form,
incapable of accessing excitations that involve contributions
from below the Fermi level. Some work has been done in

attempts to resolve this problem,2 but these alterations to the
pp-TDA method have not been explored in this work.

3.2. Triplet References and Double Excitations. In this
section, we highlight other advantages of X2C-pp-TDA over
conventional X2C-ph-RPA. In the previous section, we
presented results for atomic systems that are characterized by
being closed shell in both the N and N − 2 systems. This is
important because if the reference state has unpaired electrons
then, as a consequence of the single-reference nature of the
Hartree−Fock wave function, excited states will in general be
spin-contaminated, affecting one’s ability to extract meaningful
fine structure splittings from the results, although adaptations
to the general case exist.45−49 By using X2C-pp-TDA, it is
however possible to treat systems with N electrons with any
odd spin multiplicity, provided they become closed shell upon
the addition or removal of two electrons. Molecules that
possess triplet ground states as well as diradical moieties may be
taken as examples. To demonstrate this feature, we compare
the FSS of one set of excited states of molecular oxygen with
experimental data in Table 2. The difference between the

calculated and measured value is just 2.5 meV, notwithstanding
the approximations intrinsic in our method (e.g., the
approximate treatment of electron correlation and the two-
electron spin−orbit contributions, or the finite basis set). Of
course, the same reasoning can also be applied in reverse: X2C-
ph-RPA theory can be readily used to find excited-state FSS of
systems with a singlet ground state; however, if the addition or
removal of two electrons produces an open-shell molecule, then
X2C-pp-TDA will present some spin-contamination in the
computed excited-states.
One advantage that X2C-pp-TDA always has over X2C-ph-

RPA theory, however, is its ability to describe double
excitations. Table 2 compares calculated and reference
excited-state FSS of doubly excited states of some atomic
moieties. The performance of the method is similar to that in
the case of single excitations presented in the previous section.
Such states cannot be found among the excited states
computed via X2C-ph-RPA.

4. CONCLUSIONS
In this work, a scheme for the extension of the pp-TDA method
to relativistic two-component wave functions has been
presented. This scheme involves the approximate decoupling
of the large and small components of the relativistic wave
function by means of the X2C method, followed by a Hartree−
Fock SCF calculation on the system obtained by removing two
electrons to obtain a set of complex spinor molecular orbitals.
The two-component reference system is then used in the X2C-
pp-TDA calculation that yields the ground and excited states
for the N-electron system. The extension of the pp-TDA to a
two-component reference comes at the cost of the employing
complex spinor orbitals and not being able to separate the
problem into smaller subproblems as is done in the case of

Table 1. Calculated and Reference42 Excited-State Fine
Structure Splittings (in meV) of Some Atomic Systemsa

method level Mg Al+ Si2+

X2C-ph-RPA 3P1°−3P0° 4.89 10.49 19.85

X2C-ph-TDA 2.41 7.94 16.62
X2C-pp-TDA 2.77 9.13 18.97
ref 2.49 7.55 15.94

X2C-ph-RPA 3P2°−3P1° 9.75 21.02 39.96

X2C-ph-TDA 4.82 15.96 33.50
X2C-pp-TDA 5.55 18.40 38.40
ref 5.05 15.36 32.45

X2C-ph-RPA 3P1°−3P0° 0.33 1.82 4.43

X2C-ph-TDA 0.33 1.82 4.31
X2C-pp-TDA 0.42 2.17 5.08
ref 0.41 1.73 4.10

X2C-ph-RPA 3P2°−3P1° 0.67 3.67 9.09

X2C-ph-TDA 0.67 3.68 8.86
X2C-pp-TDA 0.84 4.50 11.04
ref 0.84 3.65 9.07

MSE MAE
X2C-ph-RPA 2.32 2.28
X2C-ph-TDA 0.32 0.19
X2C-pp-TDA 1.55 1.55

aThe presence of a superscript “°” in the term symbol denotes an odd
state with respect to space inversion. MSE (mean signed error) and
MAE (mean absolute error) are also compared.

Table 2. Excited-State Fine Structure Splittings (in meV)

system level X2C-pp-TDA ref42,50

O2
3Δ3−3Δ2 20.58 18.09

Al+ 3P1−3P0 9.20 7.75
3P2−3P1 17.93 15.03

Si2+ 3P1−3P0 19.46 16.55
3P2−3P1 37.88 32.06
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RHF or UHF references via spin integration. The increased
computational cost highlights the ever pressing need for direct
and parallel implementations of post-SCF electronic structure
methods, which is exaggerated in the case of relativistic
electronic structure calculations.
It has been shown that the X2C-pp-TDA method exhibits

excellent results in the prediction of the fine-structure splittings
of the atomic and molecular species considered here. The
results are comparable and at times better than those obtained
using X2C-ph-RPA.43 In addition, X2C-pp-TDA is able to
capture electronic excitations traditionally inaccessible by X2C-
ph-RPA/TDA thanks to the two-particle reference shift, such as
double excitations and those that would be described as spin-
contaminated in particle-number conserving methods. While
these results are promising, the general applicability of the
X2C-pp-TDA method, as with the spin-collinear variant, is
limited as it is traditionally unable to capture excitations that
involve contributions of orbitals from below the Fermi level.
That being said, there are many systems, such as triplet and
diradical systems, for which X2C-pp-TDA provides a suitable
method for the accurate description of the electronic manifold.
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