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ABSTRACT: Tractable methods for studying the molecular dynamics of chemical
processes driven by electronic nonadiabaticity are highly sought after to provide
insight into, for example, photochemical reaction mechanisms, molecular collisions,
and thermalized electronic band structures. Starting from the time-dependent
Schrödinger equation for a many-body system, a direct ab initio trajectory surface-
hopping (TSH) method relying on an analytical treatment of nonadiabatic couplings
between electronic states is developed in this work. An approach that combines time-
dependent perturbation theory and explicit time evolution via TSH to expedite
calculation of nonadiabatic transition rates, namely, meta-surface-hopping dynamics,
is presented, and an extrapolatory approach using time-dependent perturbation
theory for recovering unbiased transition rates is assessed. The meta-surface-hopping method is applied to the problem of
estimating nonradiative relaxation rates of a photoexcited iminium ion, CH2NH2

+, and evidence for internal consistency of the
combined dynamics/perturbation theory approach is presented.

1. INTRODUCTION
The prediction of molecular systems’ time evolution from first
principles provides a means to study fundamental chemical
processes with spatial and temporal resolution unparalleled by
most experiments.1−3 Time-domain simulations of chemical
systems can, for example, be used to reproduce absorption
spectra with realistically broadened line shapes,4−7 resolve
mechanisms of complex chemical transformations,8,9 and obtain
rate constants for nonequilibrium processes.10,11 The exact
chemical dynamics (in the nonrelativistic limit at least) are well
known to result from integration of the time-dependent
Schrödinger equation (TDSE, eq 1).

Ψ̇ = Ψi t t tR r R r R r( , ; ) ( , ; ) ( , ; ) (1)

, the molecular Hamiltonian, is the generator of time
translations for the molecular wave function Ψ, which depends
explicitly on nuclear and electronic degrees of freedom (DOF)
R and r, and parametrically on time, t. The molecular
Hamiltonian expressed in the atomic unit system (used
throughout this report) is given in eq 2.
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Here, a and b index the nuclear and electronic DOF,
respectively, Ma is the mass of nuclei a, and V(r, R) is the
total potential energy operator collecting all electrostatic
interaction terms between electrons and nuclei. Eigenfunctions
of the last two terms in eq 2 (i.e., the functions {Φi} which
solve the time-independent electronic Schrödinger equation,

Φ = ΦEr R r R R r R( , ) ( ; ) ( ) ( ; )r i i i ), form a complete basis at
each R in which Ψ may be expanded. Similarly resolving the

nuclear wave functions associated with each Φi in their energy
eigenbasis requires a priori knowledge of global electronic
potential energy surfaces (PESs), i.e., eigenvalues of r R( , )r
for all R where the nuclear wave function is nonvanishing.12−14

Nonclassical nuclear phenomena such as tunneling and zero-
point energy formally mandate treatment in terms of the
quantized nuclear energy levels. For heavier nuclei at
moderately high temperatures, these effects are negligible, and
treating the nuclei classically and electrons quantum mechan-
ically is only a mild approximation. These “mixed quantum−
classical” (MQC) formalisms15−17 offer a favorable compromise
between accuracy and computational expense in this case, and
the system can be selectively partitioned to allow a subset of
nuclear DOF to be treated quantum mechanically.11,18

This simplest of the MQC methods neglects the exciton−
phonon coupling altogether, under the assumption that
electronic eigenstates are well separated relative to the nuclear
kinetic energy (i.e., the Massey parameter <1).19−21 When this
assumption is not satisfied, electronically nonadiabatic
evolution can dominate the dynamics, and the effect which
slow particle motions exert on the fast particles evolution (and
vice versa) must be included to recover the correct dynamics.
To account for the coupled PESs, the electronic wave

function can be allowed to evolve into a superposition of
eigenstates which mix according to the nondiagonality of the
nuclear kinetic energy operator in the electronic energy
eigenbasis. The enormous complication that results from
relaxing the electronic adiabaticity constraint is that nuclear
dynamics are no longer strictly amenable to classical treatment.
Components of the superposition associated with excited
electronic states would exhibit proportionately lower nuclear
momenta, inevitably leading to delocalization of the nuclear
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wave function over time. One approximation to circumvent this
dilemma is to let the nuclei experience the expectation value of
the force evaluated for the electronic superposition. In this way,
the nuclei experience the “mean field” forces of the vibrationally
coupled electronic states, an approach often referred to as
Ehrenfest dynamics. The nuclear delocalization problem is
avoided at the cost of foregoing dynamical electron−nuclear
correlations in this framework. This shortcoming causes a lack
of microscopic reversibility and, therefore, detailed balance22

that leads to spurious energy transfer from the slow to fast
DOF.23,24 Even still, short-time dynamics of systems exhibiting
significant nonadiabatic coupling are often well approximated
with the Ehrenfest approach, and detailed balance can be
artificially restored somewhat through application of thermo-
stats18 or by externally reintroducing electron−nuclear
dynamical correlation back into the propagated state.25,26

Multiconfigurational mixed quantum−classical approaches
(e.g., Multiple Spawning,27 Ring Polymer28,29/Centroid30 MD,
etc.) capture correlations in the fast and slow DOF but scale
less favorably than the mean field method due to increased
dimensionality of their molecular wave function ansatz. Reviews
of the performance and expense of these multiconfigurational
techniques are found elsewhere in the literature.31−33

Independent trajectory surface-hopping (TSH) approaches
have been introduced in an effort to decouple the evolution
of nuclear wave functions associated with different electronic
states34,35 and often produce results that align favorably with
experimental and full quantum dynamics.36−38 Swarms of
independent TSH trajectories offer a stochastic sampling of the
dynamical electron−nuclear correlation neglected by the mean
field dynamics. Since TSH permits deviation of the nuclear
trajectories from the majority probability time-evolution
channel, it is better suited for exploring dynamics initiated by
rare events than the Ehrenfest scheme. These minority
probability nuclear evolution channels are important to the
dynamics of systems undergoing, e.g., photochemical processes
and high-energy collisions.
While there are numerous implementations of TSH

dynamics intended for use alongside electronic structure theory
packages,36,37,39−43 most of the previous works resort to making
computationally affordable approximations for the excited state
potential energy surfaces, treatment of the quantum “back-
reaction” describing the effect that electronic transitions exert
on the nuclear evolution, and/or evaluation of the nonadiabatic
couplings. With the recent derivations of analytical derivative
couplings for low-scaling, single-reference electronic structure
formalisms44−49 and ever-increasing computational power, it
becomes possible to carry out first-principles, on-the-fly,
surface-hopping dynamics.
In this report, a direct ab initio surface-hopping method is

presented for studying nonradiative decay processes induced by
electronic nonadiabaticity. Electronic energies, analytical forces,
and nonadiabatic couplings are computed “on-the-fly”. We also
present an approach to expedite the acquisition of temporal
properties of systems exhibiting nonadiabatic effects, relying on
an external biasing procedure to accelerate the dynamics in a
systematic, reproducible fashion. This approach will be referred
to as the meta-surface-hopping method. The implementation
outlined here uses the random phase approximation (RPA)
with either a Hartree−Fock or density functional theory ground
(reference) state to treat the many-body problem for excited
electronic states,50−61 accounting for the effect of electronic
transitions on the nuclear dynamics and making use of

analytical expressions for the nonadiabatic coupling between
electronic states. Thus, our implementation is designed to
capture all of the requisite physics to accurately predict
electron−phonon scattering processes for general molecular
and condensed-phase systems and also to be compatible with
meta-surface-hopping.
We begin by presenting a brief overview of the necessary

formalism to motivate the meta-surface-hopping method and
then present working equations and pseudocode for the
numerical integration of the molecular equations of motion
along with the TSH algorithm. Finally, we introduce the meta-
surface-hopping biasing scheme which combines the benefits of
TSH and time-dependent perturbation theory to accelerate the
evaluation of dynamical properties of electronically non-
adiabatic systems. The developed concepts are then applied
to a test case that expedites the calculation of nonradiative
decay rates for a small photoexcited model system.

2. METHODOLOGY
2.1. Review of Surface-Hopping Method. To arrive at a

method capable of capturing the dynamical correlations
between electronic and nuclear DOF, a multiconfiguration
ansatz for the molecular wave function is first posited:

∑Ψ = Ω Φt tR r R r R( , , ) ( , ) ( , )
k

k k
(3)

Here, we have associated a many-body nuclear wave function,
Ωk, with each electronic adiabat, Φk, where a complex
exponential “phase factor” between the electronic and nuclear
wave functions has been implicitly absorbed into each Ωk.
Substituting this ansatz into eq 1, multiplying on the left by
Φj*(r, R), and integrating over r yields the Schrödinger
equation for the nuclear wave functions:
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where we have made the following definitions:

= ⟨Φ |∂Φ ∂ ⟩d R/kj
a

k j a (5)

= ⟨Φ |∂ Φ ∂ ⟩D R/kj
a

k j a
2 2

(6)

From eq 4, a physical picture for the nuclear evolution emerges.
Piecewise application of Ehrenfest’s theorem to the first two
terms in eq 4 gives the centers of the kth nuclear wave function
evolving according to the curvature of the corresponding
adiabatic PES. The third term contains the non-Hermitian
second derivative couplings, Dkj, which contribute small
corrections to the adiabatic nuclear kinetic energies and
interstate couplings that are generally safe to neglect in this
context.62 The final term in eq 4 is primarily responsible for the
mixing of the nuclear wave functions brought about by the
nuclear momentum operator evaluated between adiabats, dkj,
which we aim to account for probabilistically with the TSH
algorithm.
Since the goal is to arrive at a classical trajectory-based

method, we promptly take the classical limit for the nuclear
DOF by identifying each nuclear wave function with a
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(Hartree) product of Dirac delta functions, δ(R − Rk(t)),
centered on the nuclei:

δΩ = −t c t tR R R R( , ( )) ( ) ( ( ))i k k k (7)

The complex coefficients {ck(t)} collect the weights and
phases for each product (Ωk·Φk) contributing to the super-
position state, and Rk(t) gives the coordinates of the classical
nuclei evolving according to the forces from the kth adiabatic
state. Note that ⟨Φk|Φ̇j⟩ = Ṙj(t)·⟨Φk|∇Rj

|Φj⟩ in the absence of
any external time-dependent potential. Substituting the
“classical nuclei” wave function ansatz for Ω (eq 7) back into
the TDSE (eq 1) gives, with some straightforward algebraic
manipulations, the equation of motion for ck(t):

∑

∑

δ̇ = − ̇ ·

=

  
ic t i t c t

c t

V R d

H

( ) ( ( ) ) ( )

( )

k
j

kj jj j kj j

j
kj j

Hkj
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where = ⟨Φ | |Φ⟩V k r jkj . Since we choose to work in the
adiabatic basis, {Φj} is the set of eigenfunctions of the
electronic Hamiltonian and V becomes diagonal. Ehrenfest’s
theorem gives the time-dependence for the nuclear position
and momentum expectation values equivalent to the New-
tonian equation of motion (eq 9).

−
∂
∂

= ̈
V

R
mR

jj

j
j

(9)

So, by taking the classical limit for the nuclear wave function
associated with each electronic adiabat in the multiconfigura-
tion wave function, we have arrived at a trajectory based
method of sorts, where the nonadiabatic coupling between
electronic energy eigenstates mixes the “classical” trajectories.
Admitting the possibility of electronic transitions folds some
uncertainty back into the nuclear positions, and the equations
of motion we arrive at describe a delocalized superposition of
otherwise sharply localized nuclei. The centers of the nuclear
wave functions, {Rk}, spread according to the disparate forces
they encounter along their respective electronic PESs. As a
result, even if the system is initially prepared in an eigenstate of
the nuclear position operator, it may not remain so as the nuclei
move. Instead, ck(t)ck(t)* gives the probability of observing the
system in the kth nuclear position eigenstate at time t. More
generally, ρjk(t) = cj(t)ck*(t) are elements of the one-particle
reduced density matrix.63 The notion of classical nuclei acting
as observers of the quantum electronic state as they evolve has
been explored in some recent non-TSH developments in the
field of nonadiabatic dynamics.64

The state of the system is propagated by integrating the
coupled set of differential eqs (eqs 8 and 9). However, as the Rk
terms in eq 8 begin to delocalize, the matrix elements djk also
become nonlocal, sharply increasing the cost of evaluating the
dynamics.65,66 For the sake of practicality, an “independent
trajectory approximation” is invoked in which nuclear evolution
on each electronic energy eigenstate is assumed identical, i.e.,
Rk(t) = R0(t) for all k. Electron−nuclear coherence is
spuriously enforced in each trajectory under this approximation,
and error is accrued in {ck(t)} since nuclear wave functions
evolving on the different PESs should dephase from one
another, diminishing (on average) their overlap.67,68 The

{ck(t)} from a given independent trajectory no longer
individually represents the temporal behavior of the system.
However, error in the independent trajectories’ {ck(t)} can be
partially removed by taking the population-weighted average of
the {ck(t)} over all possible trajectories (started from the same
initial conditions) that would result from at each instant in time
allowing the nuclei to evolve according to the forces of each
adiabat.69 It is easy to show that number of these speculative
trajectories increases factorially in time. However, the most
heavily weighted trajectories in the average can be preferentially
sampled so that error in {ck(t)} can be minimized with
subfactorial time complexity.
From this notion sprung the TSH algorithm. Nuclei evolve

according to the curvature of a single adiabatic state’s PES, with
stochastic switches of the state that contribute the instanta-
neous forces (“surface-hoping”) during each TSH trajectory.35

At a given time, the probability of the system being observed in
nuclear position eigenstate k (given by |ck(t)|

2) determines the
probability of the kth state contributing the nuclear forces. In
this way, a set (or “swarm”) of TSH trajectories recovers the
branching statistics of bifurcating nuclear trajectories to account
for the dynamic correlation between {ck(t)} and nuclear forces
in each trajectory, while simultaneously ensuring that the
average behavior of the nuclear dynamics across many
trajectories is consistent with the average {ck(t)}.
The probability of switching the state from k to j, which

minimizes the number of switches11,70 required to maintain
average nuclear forces consistent with {ck(t)} across a swarm of
trajectories, is given by

∫+ Δ = ′
− ′ * ′ ̇ ′ · ′

′ * ′

+Δ 
g t t dt

c t c t t t

c t c t

R d
( )

2 e( ( ) ( )) ( ) ( )

( ) ( )jk n
t

t t k j kj

j j

0n

(10)

gjk(t) is compared to a uniformly distributed random number,
η, on the open interval (0,1). If gjk ≤ η, no hop occurs, and the
numerical integration of eqs 8 and 9 continues with no change
in the state contributing the nuclear forces. If gjk > η, then the
component of the nuclear momentum along djk is checked to
ensure the nuclear kinetic energy along the coupling vector is
greater than or equal to the difference in potential energy of the
two states. If so, the hop is accepted, nuclear momenta are
rescaled to conserve total energy, and the forces that dictate the
evolution of the nuclei in the next time step will be those of
state k. Otherwise, the hop is rejected. Because classically
forbidden hops are disallowed, the TSH approximately satisfies
detailed balance and reproduces the Boltzmann distribution for
electronic state populations at long times.23 This strict energy
conservation condition can also be relaxed somewhat according
to the time−energy uncertainty relation to account for nuclear
tunneling events that manifest as classically forbidden
transitions.71

2.2. Direct Ab Initio Surface-Hopping Algorithm Using
a Split Integrator. Since the characteristic time scales on
which the electronic and nuclear DOF evolve differ by many
orders of magnitude, split time-scale integration schemes can be
safely applied to promote computational efficiency. In the
following section, we describe our implementation of the direct
ab initio fewest switches TSH method in the development
version of the Gaussian72 suite of electronic structure programs
with interface to the direct BOMD algorithm.73,74 In the direct
formalism, all components of the TSH method, including the
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potential energy, force, and nonadiabatic coupling are
computed “on-the-fly”.
In the current work, eq 9 is integrated numerically by the

velocity Verlet algorithm:

̇ + Δ = ̇ + ̈ Δ⎜ ⎟
⎛
⎝

⎞
⎠t t t t tR R R

1
2

( )
1
2

( )n n0 0 0 (11a)

+ Δ = + ̇ + Δ⎜ ⎟
⎛
⎝

⎞
⎠t t t t tR R R( ) ( )

1
2n n0 0 0 (11b)
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⎞
⎠t t t t t t tR R R( )
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2

1
2

( )n n n n0 0 0

(11c)

with nuclear time step Δtn.
Equation 8 can equivalently be expressed in matrix/vector

notation (eq 12).

̇ =i t t tc H c( ) ( ) ( ) (12)

The vector of complex coefficients, c(t), is propagated here
using a midpoint unitary transformation method:75,76

+ Δ = + Δ⎜ ⎟
⎛
⎝

⎞
⎠t t t t tc U c( )

1
2

( )e e (13)

= − Δt i t tU H( ) exp[ ( ) ]e (14)

where Δte is the electronic time step. The matrix
exponentiation is carried out by first expressing H(t) in its
eigenbasis:

ϵΛ Λ= †t t t tH( ) ( ) ( ) ( ) (15)

Then the propagator can be easily constructed:

ϵΛ Λ= − Δ †t t i t t tU( ) ( )exp[ ( )] ( )e (16)

The hopping probabilities defined in eq 10 are conveniently
evaluated by numerical integration with the same discrete time
step utilized in the electronic propagation. At each step in the
numerical integration of eq 8, the integrand of eq 10 is
evaluated and multiplied by the electronic time step. These
values are summed over the course of the nuclear step to give
the left Riemann sum approximation to the integral in eq 10.
Analytical expressions for the nonadiabatic couplings for states
represented in the electronic structure framework of RPA or
linear response TDDFT have been previously derived by
numerous groups.44−49 A slightly different derivation of the
working equations used in this work to calculate first-order
nonadiabatic coupling matrix elements between the ground and
excited states resolved via random phase approximation (RPA,
i.e., “linear response TDDFT/TDHF”) based methods is given
in the Appendix 1.

Figure 1. Schematic representation of the split time-scale integration scheme used in the current implementation.
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Since the nuclei at all times evolve according to the forces
associated with a single adiabatic state (and nuclear momenta
are explicitly rescaled after hops to conserve total energy),
energy conservation of exactly the same quality as the adiabatic
“Born-Oppenheimer” molecular dynamics (BOMD) is trivially
guaranteed by the surface-hopping algorithm. Both the velocity
Verlet and midpoint methods are second-order integration
schemes. However, since the djk, Ṙ0, and Vjj are calculated only
at intervals of Δtn, these quantities are interpolated between t
and t + Δtn to account for their linear changes during nuclear
time steps in the electronic propagation (see Figure 1 for
schematic representation and pseudocode.) This interpolation
complicates the error analysis of the resulting method
somewhat since it is a source of error in the electronic
propagation that is not a result of the inaccuracy of the
numerical integration of eq 12 but of the assumed linearity of
the interpolated quantities across the nuclear time step. The
nuclear time step should therefore be chosen sufficiently small
to not only conserve total energy of the system as in the
BOMD scheme but also to not under-sample regions of the
nuclear phase space where d is nonlinear in R over the distance
Ṙ·ΔtN.
When the nuclear evolution brings two adiabats into

degeneracy, the derivative couplings (D and d) between
those states become unboundedly large in magnitude and the
involved PESs exhibit discontinuities. When these regions of
strong coupling are extremely localized in the nuclear phase
space, the finite time-step of the nuclear dynamics can cause the
crossing points to be skipped over in some trajectories. This
scanario becomes more common for larger systems of weakly
interacting fragments. In this case, it is common practice to
utilize a basis of diabatic states since off-diagonal matrix
elements of the electronic Hamiltonian in the diabatic
representation are well defined even at PES crossings, and
moreover these electronic couplings are generally well-behaved
functions of the nuclear coordinates, R.77 Beyond trans-
formation to a (locally quasi-)diabatic basis, approaches to
identify PES crossings directly within the adiabatic basis based
on the overlap of the electronic eigenfunctions at adjacent ΔtN
can also be utilized to enforce transition at PES crossings
externally to the FSSH algorithm.78,79

2.3. Meta-Surface-Hopping Dynamics. A longstanding
criticism of TSH approaches has been the sheer quantity of
trajectories that must be computed in order to ensure the
convergence of results. If the dynamical process of interest
occurs over long (∼ns and slower) time-scales, or is fast but
initiated by some rare event, TSH is of little practical utility. In
this section, we introduce a “meta-surface-hopping dynamics”
method (MSH) for expediting the estimation of nonadiabatic
relaxation time constants. This approach, in the similar spirit as
the “meta-dynamics”,80,81 combines time-dependent perturba-
tion theory (TDPT) with direct ab initio TSH to achieve an
optimal balance of computational expense and accuracy. The
central idea of the meta-dynamics approach is to bias the
evolution of a system toward a desired low-probability pathway
and then mathematically relate results of the biased dynamics to
those for the unbiased system.80,81 In this way, rare events can
be efficiently investigated directly in the time domain, and the
effect of the biasing on the resulting dynamics can be accounted
for post facto. While the MSH method is certainly not the first
method to be put forth for expediting the description of slow
nonadiabatic processes in TSH,82−84 the current work (to the

authors’ best knowledge) represents the first such attempt to
combine the benefits of direct dynamics and TDPT to this end.
The choice of rare event biasing depends on whether or not

there exists a mathematical expression that can resolve the
effect of the biasing on the dynamical observables. TDPT is a
reliable method, with some degree of scrutiny, for describing
the response of a system in the instants following the
application of a small perturbation. Recall that the rate of
transition from state i to j mediated by a time-independent
external potential can be approximated by the Fermi’s golden
rule (in atomic units) derived using TDPT:85−87

π δΓ = |⟨Φ|Φ̇⟩| −E E2 ( )ij i j i j
2

(17)

A quasi-static approximation may be used to cast eq 17 into a
time-dependent expression:

π δΓ = |⟨Φ |Φ̇ ⟩| −t t t E t E t( ) 2 ( ) ( ) ( ( ) ( ))ij i j i j
2

(18)

As the character of the initial and final states change with
nuclear motion, so does the transition rate. By following the
explicit time evolution of the adiabats with molecular dynamics,
the electronic states to which the Fermi’s golden rule rate
expression is applied are sampled from an ensemble of
thermally accessible nuclear configurations. The ensemble-
averaged expression for the transition rate is then given by

∫π δ⟨Γ ⟩ =
′

|⟨Φ |Φ̇ ⟩| −
′

t
dt t t E t E t

2
( ) ( ) ( ( ) ( ))ij

t

i j i j
0

2
(19)

Using the chain rule, we can obtain the relationship between
the nonadiabatic transition rate and the nonadiabatic coupling
strength,

∫

∫

π δ

π δ

⟨Γ ⟩ =
′

| ̇ ·⟨Φ|∇ |Φ⟩| −

=
′

| ̇ · | −

′

′

t
dt t E E

t
dt t t E E

R

R d

2
( ) ( )

2
( ) ( ) ( )

ij

t

j i j i j

t

j ij i j

R
0

2

0

2

j

(20)

Equation 20 suggests that the time averaged nonadiabatic
transition rate depends linearly on the nuclear kinetic energy
(∝ Ṙ2) and quadratically on the nonadiabatic coupling strength.
Increasing the simulation temperature will increase the
nonadiabatic transition rate. However, the nature of the
dynamics will be severely modified as the nuclei are free to
traverse different reaction pathways at substantially elevated
temperatures. In contrast, there are two advantages of directly
biasing the time-dependent nonadiabatic coupling in eq 20.
First, it is a “cold” biasing technique in which the system
temperature is not modified. Second, because of the quadratic
dependence, one can quickly obtain a meaningful result without
enforcing a large biasing.
In this work, we simply use and test a uniform biasing

approach,

κ=t td d( ) ( )biased
(21)

where κ is a time-independent biasing factor for all states and at
all nuclear configurations. With such a biased time-dependent
nonadiabatic coupling, it is rather easy to show from eq 20 that

κ⟨Γ ⟩ ≈ ⟨Γ ⟩biased 2 unbiased
(22)

With eq 22, the effect of biased time-dependent nonadiabatic
coupling can be accounted for retroactively via first-order
TDPT (i.e., Fermi’s golden rule). Once well-converged results
for the biased dynamics have been collected, one can relate the
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dynamics of the biased system back to those of the unbiased
system via TDPT.
It is obvious that the dynamics are unaffected by the biasing

in the limit of zero coupling, and the correct asymptotic
behavior is ensured. Nonetheless, one must ensure that κ is not
so large that regions of the nuclear phase space that would be
extensively sampled during the unbiased dynamics go unex-
plored as a result of overpromoted state switches. The
stochastic nature of the surface-hopping algorithm builds in
some insurance against this behavior, but in the event that
excessive bias is applied, the dynamical processes that were rare
in the unbiased dynamics dominate in the biased dynamics, and
vice versa. Numerous trajectories would then be required to
explore the regions of phase space that were frequently sampled
in the unbiased dynamics, negating the practical advantage of
applying the bias in the first place. Therefore, a balance must be
struck in which the scaling factor is sufficiently large to promote
the rare event but not so large as to preclude electronically
adiabatic evolution in coupled regions of the adiabatic PES.
In general, one should seek to use the smallest κ that

produces nonadiabatic transitions at a rate that permits their
study. The reaction coordinate for the nonadiabatic process can
be characterized, and an appropriate range of scaling factors can
be deduced from sample trajectories by analyzing the extent of
sampling of the nuclear phase space prior to the nonadiabatic
transition. Note that situations may arise in which the
magnitudes of κ needed to enable nonadiabatic processes to
occur at a tractable rate do not uphold the “linear-response”
regime in which the first-order TDPT is reliable. Not all
unbiased observables are straightforwardly recoverable from the
biased dynamics either. If a reliable relationship between the
property of interest and the strength of the perturbation can be
established (as is done here for the nonradiative transition rates
by application of the Fermi’s golden rule), the unbiased
property can in principle be recovered from sufficiently many
biased trajectories. However, the nuclear dynamics following a
premature/late state switch relative to the unbiased dynamics
can be substantially altered by the excess/deficit of energy
transferred into nuclear momentum along the coupling vector
when a hop occurs early/late relative to the unbiased rate.
Observables that depend on a faithful reproduction of the
nuclear dynamics following the nonadiabatic transition may
therefore suffer substantial statistical degradation.

3. RESULTS AND DISCUSSION
In this work, we will demonstrate that nonadiabatic transition
rates from the direct MSH dynamics are consistent with eq 22
derived from the TDPT expression. Details of a study validating
the MSH approach on a single avoided crossing model problem
are found in Appendix 2. As a practical test of the
implementation outlined in the Methodology section, we
performed a set of direct TSH trajectories to track the
nonradiative decay of the first excited (singlet) state of
protonated formaldimine, H2CNH2

+. We simulate a
Boltzmann ensemble of formaldimine molecules at room
temperature (298 K). For a specific vibrational mode with a
given Boltzmann sampled vibrational energy, the initial phase
(nuclear positions and momenta) was chosen randomly and
classically within the harmonic oscillator approximation.88,89

The total angular momentum was set to zero. Since the real
potential energy surface is not strictly harmonic, the initial
vibrational coordinates and momenta generated by this
procedure were scaled to correct for the anharmonicity. This

ensemble assumes a broad geometric distribution of vibrational
phases of the initial ground state from which the vertical
excitation to the first singlet excited state takes place. A total of
40 initial conditions were prepared for dynamic studies. The
electronic wave function was initialized as a pure state
comprised exclusively of the first excited (singlet) state of the
molecule in order to emulate a Franck−Condon type vertical
photoexcitation of the molecule at time zero of the simulation.
Five sets of trajectories from the 40 initial conditions were
integrated for 1 ps, each employing a different biasing factor, κ,
listed in Table 1. To enable direct comparison of results across

the different sets of trajectories, identical initial conditions and
random number generator seeds were used for the five different
swarms. The values of Δtn and Δte used in all simulations were
0.1 fs and 0.004 fs, respectively. These step sizes ensured energy
conservation to within 0.03 kcal throughout the picosecond
trajectories. In the following simulations, electronic degrees of
freedom are modeled at the TDA-RPA-HF/6-31g(d,p) level of
theory. Since the lower-scaling Tamm−Dancoff approximation
(TDA) to the RPA yields nearly equivalent nonadiabatic
couplings and excitation energies for the current system, TDA-
RPA was used to resolve the excited state electronic structure in
this case study.
Figure 2 shows the potential energy surfaces of the ground S0

and the first excited state S1 and the analytical nonadiabatic
coupling strength as a function of CN bond rotation of the

Table 1. Parameters for Nonradiative Decay Profile of S1
State of H2CNH2

+ Fit to a Function of the Forma:

= + −τ τ− −f t B e( ) Be (1 )t t/ /2e g
2 2

κ τe τg B τ σ2

125 745 2813 0.408 1970 0.055
250 3089 826 0.159 1185 0.033
500 673 717 0.841 680 0.028
1000 395 144 0.387 241 0.021
1500 N/A 114 0.0 114 0.022

aτ values are reported in units of ΔtN or s × 10−16. σ2 are the variances
in the residuals for the fitted decay functions, calculated by the

following: σ = ∑ −− = f t f t( ( ) ( ))
N i

N
N N

2 1
1 1 fit

2

Figure 2. S0 and S1 PESs (top panel) and corresponding derivative
coupling magnitude (bottom panel) as a function of H−CN−H
dihedral. All other internal coordinates are fixed at their equilibrium
geometry values.
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H2CNH2
+ molecule. As expected, the energy gap between S0

and S1 states is the smallest when the CN bond is rotated by
90° from the ground state equilibrium geometry, where the
nonadiabatic coupling strength also reaches its maximum.
However, the smallest gap is still ∼1.8 eV, and the nonadiabatic
coupling strength is only ∼3 times larger than at the ground
state equilibrium structure. This cursory analysis suggests that
nonadiabatic transitions along this coordinate are rare events
an ideal test case to showcase the MSH dynamics.
As a benchmark for the effects of the biasing strategy on the

PES sampling, we have plotted the density of nuclear position
eigenstates (Figure 3) sampled prior to relaxation from S1. At

the largest κ employed in this work, under-sampling of regions
of the phase space occurs as a result of overpromotion of
nonadiabatic transitions. The κ = 1500 dynamics would, in
general, be discarded on these grounds, but the symmetry of
the nuclear phase space for the particular system under
investigation here makes the effect of the induced non-
ergodicity less pronounced.
The decay profiles were fitted to Gaussian plus exponential

functions (Figure 4). Since only two states are involved in the
relaxation, multiexponential character is not expected in the
decay profile. However, Gaussian-shaped relaxation profiles are
included in the fitting function in order to quantify the non-
Markovian, phonon memory-dependent contributions to the
relaxation dynamics.90 The resulting fit parameters and time
constants for the decay are presented in Table 1, along with the
explicit form of the fitting function, and plotted in Figure 5,
along with the trendline of the form anticipated by the TDPT.
The resulting relaxation rates agree with the quadratic scaling

predicted via the TDPT. Some of the deviation from the
expected scaling can be attributed to the limited number of
trajectories included in this investigation. Better agreement is
seen for larger κ where a greater portion of trajectories undergo
hops. So, even though the same initial conditions were used for
each swarm, the resulting rates are better statistically converged

for the larger κ cases (see variances of the residuals for each
fitted function in Table 1)another unique advantage for the
MSH method. Once the required statistical convergence has
been achieved for the relaxation rate at a few different biasing
strengths, the decay constants can be fitted to a function that is
quadratic in κ. The prefactor of the fitted quadratic function
(Figure 5), 3.96 × 107s−1 for the current study, gives the MSH
extrapolatory estimate for the relaxation rate for the unbiased
system, i.e., for κ = 1. The results indicate that the studied
process is indeed expected to be quite slow with respect to the
time-step of the dynamics.

4. CONCLUSION
In this report, we presented a direct ab initio (meta-)surface-
hopping dynamics approach, where energies, analytical forces,
and nonadiabatic couplings are computed “on-the-fly”. A split
integrator was implemented to facilitate the computation
without compromising energy conservation. Analytical deriva-
tive coupling within the random phase approximation frame-
work was derived and the working equations efficiently

Figure 3. Histograms showing the density of nuclear position states
sampled prior to relaxation to the ground state as a function of the
biasing factor, κ. So as not to distinguish between the degenerate
clockwise and counterclockwise rotation pathways about the double-
bond in this analysis, identical configurations with respect to this
symmetry have been binned together. Dihedrals are computed
between the two hydrogens “trans” to one another in the initial
condition, so that the “cis” and “trans” isomers are well defined and
spurious nonergodic behavior in the DOS induced by large κ can be
resolved.

Figure 4. Examples of a vibrationally induced relaxation profile from
S1 state for H2CNH2

+ resulting from the MSH dynamics with κ =
125, 250, 500, 100, and 1500 (black traces) and corresponding
exponential plus Gaussian fitted functions (colored, dashed traces).

Figure 5. Plot of relaxation rates from Table 1 showing the trend for
the relaxation rate (τ−1, black markers) as a function of the biasing
factor, along with a least-squares fit of the rates as a function of biasing
factor that is consistent with Fermi’s golden rule (i.e., τ−1 ∝ κ2).
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implemented. We also presented a time-dependent perturba-
tion theory (TDPT)-based meta-dynamics approach to bias the
dynamics toward nonadiabatic rare events. This approach aims
to accelerate the acquisition of temporal properties of systems
exhibiting electronic nonadiabaticity in a systematic, reprodu-
cible fashion.
As a test of the nonadiabatic meta-surface-hopping method,

we calculated several sets of 40 trajectories with different
biasing strengths for photoisomerizing protonated formal-
dimine. We have shown that the trend predicted via the
TDPT expression holds when comparing the dynamics of
swarms with different biasing factors, suggesting the internal
consistency of our meta-dynamics/TDPT approach.

■ APPENDIX 1: FIRST-ORDER NONADIABATIC
COUPLING MATRIX ELEMENTS BETWEEN
GROUND AND EXCITED STATES

The mathematical expressions for derivative coupling within
the random phase approximation (RPA) or the linear response
TDDFT framework have have been previously presented by
other groups.44−49 Here, we present slightly different
derivations for obtaining an efficient working expressions
implemented in this work for the ground to excited state
derivative coupling. In the present work, we adopt the notation
that indices i, j, k, and l refer to occupied molecular orbitals
(MO); a, b, c, and d refer to virtual MOs; and p, q, r, and s refer
to general MOs. The terms μ, ν, λ, and δ will be used to label
atomic orbital (AO), and σ, σ′ terms label different spin
orientations.
We cast the derivative coupling into second quantized form

as a scattering problem off of a single body, anti-Hermitian
operator, ∇ξ,

∑ σ σ∇ = ⟨ |∇ | ⟩ξ
σ

ξ σ σ
†p q a a; ;

pq
p q

(A1)

where ap
† and aq are the second quantized Fermionic creation

and annihilation operators, respectively.
Recalling the expression for the nonadiabatic coupling

(derivative coupling) with respect to nuclear coordinate ξ
between ground and Ith excited state, d0I

ξ , we may recast it into a
general second quantized expression,

∑ σ σ= ⟨Ψ |∇ |Ψ⟩ = ⟨Ψ | |Ψ⟩⟨ |∇ | ⟩ξ
ξ

σ
σ σ ξ

†d a a p q; ;I I
pq

p q I0 0 0
(A2)

In the case where the ground state is expressed as a single Slater
determinant of Hartree−Fock (HF) or Kohn−Sham (KS)
orbitals, the Ith excited state can be written as a non-Hermitian
excitation operator T̂I acting on the ground (reference) state,

∑|Ψ ⟩ = ̂ |Ψ ⟩ = |Ψ ⟩
σ

σ σ σ
†T t a aI I

rs
rs
I

r s0 0
(A3)

For RPA and the Tamm−Dancoff approximation (TDA)
thereof, the expression for T takes the convenient forms

= =
†⎛

⎝⎜
⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟T

0 0
X 0

T
0 Y

X 0
I

I

I I

I
TDA RPA

(A4)

where |XI⟩ and |XI,YI⟩ are the transition vectors for the Ith

excited state for TDA and RPA, respectively. Using the
expression for the Ith excited state from eq A3, eq A2 may be
evaluated as

∑ σ σ= − ⟨ |∇ | ⟩ξ

σ
σ ξd X i a(TDA) ; ;I

ia
ia
I

0
(A5)

∑ σ σ= − − ⟨ |∇ | ⟩ξ

σ
σ σ ξd X Y i a(RPA) ( ) ; ;I

ia
ia
I

ia
I

0
(A6)

Working expressions for the derivative operator in the basis
of single particle molecular orbitals may be trivially obtained via
direct differentiation.

∑

σ σ

μ ν

⟨ |∇ | ⟩ = +

= * ⟨ | ⟩

ξ σ
ξ

σ
ξ

σ
ξ

μν
μ σ

ξ
ν σ

p q U S

S C C

; ; pq pq

pq p q

([ ])

([ ])

(A7)

where Uξ is the solution to the coupled-perturbed Kohn−
Sham/Hartree−Fock (CPKS/CPHF) equations

∑ + = −

= + + − ϵ −

σ
σ σ σ

ξ
σ

σ σ
ξ

σ
ξ

σ
ξ

σ
ξ

σ
ξ

′
′ ′

+

U R

R h v v S G S

A B( )

1
2

[ ]

jb
ia jb ia

ia ia ia
H

ia
XC

i ia ia oo

,jb

( ) ( ) ( ) ( ) ( )

(A8)

where the parenthetical superscript denotes differentiation at
fixed MOs, h is the single particle core Hamiltonian, {ϵi} is the
occupied orbital eigenenergies, Sξ is the total derivative of the
AO overlap matrix in the MO basis, vH is the static Hartree
term, and vXC is the static KS-XC potential, which is related to
the exchange-correlation kernel, EXC, by

∑ μ
ρ

ν= *⟨ |
∂
∂

| ⟩σ
μν

μ
σ

νv C
E

Cia i a
XC XC

(A9)

G+ is the electron-repulsion-integral tensor contracted with the
occupied−occupied block of the total derivative of the overlap
in the MO basis, Soo

ξ

∑ σ σ δ σ σ

σ σ σ σ

= | ′ − |

+ | + | | ′

σ
ξ

σ
σσ

σσ ξ

+

′
′

′

G S ia jk C ik ja

ij ak ia f jk S

[ ] (2( ) [( )

( )] 2( ))

ia oo
jk

x

xc jk

( )

( )
(A10)

where Cx ∈ [0,1] is the scaling factor for exact HF exchange in
hybrid DFT and f XC

σσ′ is related to the XC kernel by

δ ρ
δρ δρ

=
′
′

σσ

σ σ

′

′
f

E r r
r r
[ ( , )]

( ) ( )XC

2
XC

(A11)

Inserting eq A7 into eq A5 and eq A6 yields a simple yet
inefficient working expressions for the derivative coupling

∑ ∑= − −ξ

σ
σ σ

ξ

σ
σ σ

ξd X U X S(TDA)I
ia

ia
I

ia
ia

ia
I

ia0
([ ])

(A12)

∑

∑

= − −

− −

ξ

σ
σ σ σ

ξ

σ
σ σ σ

ξ

d X Y U

X Y S

(RPA) ( )

( )

I
ia

ia
I

ia
I

ia

ia
ia
I

ia
I

ia

0

([ ])

(A13)

One can eliminate the explicit dependence on Uξ via a
transformation akin to the Sternheimer−Dalgarno interchange
theorem91,92

∑ ∑= ̃ −ξ

σ
σ σ

ξ

σ
σ σ

ξd Z R X S(TDA)I
ia

ia
I

ia
ia

ia
I

ia0
TDA, ([ ])

(A14)
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∑ ∑= ̃ − −ξ

σ
σ σ

ξ

σ
σ σ σ

ξd Z R X Y S(RPA) ( )I
ia

ia
I

ia
ia

ia
I

ia
I

ia0
RPA, ([ ])

(A15)

∑ + ̃ =
σ

σ σ σ σ
′

′ ′Z XA B( )
jb

ia jb
I

ia
I

,jb
TDA,

(A16)

∑ + ̃ = −
σ

σ σ σ σ σ
′

′ ′Z X YA B( )
jb

ia jb
I

ia
I

ia
I

,jb
RPA,

(A17)

While the solution of eq A16 cannot be avoided, the solution of
eq A17, as was first recognized by Furche,47 is known a priori,

ω
̃ = +σ σ σZ X Y

1
( )ia

I

I
ia
I

ia
IRPA,

(A18)

where ωI is the excitation energy corresponding to the
transition vector |XI,YI⟩. Transforming eq A14 and eq A15
into the AO basis, one can obtain an efficient working
expression for the derivative coupling closely resembling that of
the ground state gradient

∑ ∑

∑ ∑

∑

μν λδ

ξ

= ̃ + ̃
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where

∑ ∑̃ = * ̃ = * −μνσ
μν

μ σ ν μνσ
μν

μ σ σ νT C X C T C X Y C; ( )I
i ia

I
a

I
i ia

I
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I
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̃ = ϵ ̃σ σ σW Z ;ia
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̃ =σW 0ab
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μνσ λδσ μνσ λδσ σσ

μδσ λνσ νδσ λμσ
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Z D Z D
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I I
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,
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2
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TDA/RPA, TDA/RPA,

where D is the ground state KS/HF density.

■ APPENDIX 2: META-SURFACE-HOPPING METHOD
VALIDATED ON ONE-DIMENSIONAL SINGLE
AVOIDED CROSSING PROBLEM

The robustness of the MSH method relies on the surface
hopping and perturbative-derived transition rates being affected
proportionately by an artificial magnification of the coupling
strength between states. As was derived in the main text (eq
22), the Fermi’s golden rule transition probability depends
quadratically on the biasing strength parameter, κ. However,
the coupling strength only explicitly enters into the FSSH
transition probability expression (eq 10) linearly. For these two
approaches to yield consistent behavior upon scaling of the
coupling, the effect of the heightened coupling on the
composition of the evolving electronic wavepacket must
account for the “missing power” of the scaling factor in the
FSSH transition probability expression. From eq 8, it is clear
that the evolution of the density matrix elements that enter into
the FSSH probability expression depends nonlinearly on the
scaling factor, κ, so unlike the TDPT approach, no simple
closed form relationship can be derived between κ and the
FSSH transition probability. Instead, numerical evidence that
the inclusion of the magnified coupling in the electronic
propagation effectively accounts for the apparent discrepancy
between the surface hopping, and TDPT transition proba-
bilities must suffice.
To numerically probe the relationship between the FSSH

relaxation rates and a constant factor scaling the coupling
strength between the quantum states of a system, the MSH
method was applied to a single avoided crossing model
problem defined by the following Hamiltonian in the diabatic
representation:70

= − − ≥

= − − − ≤

= −

= = −

V R A BR R

V R A BR R

V R V R

V R V R C DR

( ) [1 Exp[ ]], 0

( ) [1 Exp[ ]], 0

( ) ( )

( ) ( ) Exp[ ]

11

11

22 11

12 21
2

(B1)

Surface hopping trajectories were evaluated directly in the
diabatic basis. For the MSH biasing procedure, the diabatic
couplings (rather than the analogous derivative couplings
between adiabats which vanish in the diabatic representation)
were uniformly scaled by κ. For the purposes of isolating the

Figure A1. Left: Diabatic energy curves and couplings in the region of the surface crossing for the single avoided crossing model problem. Right:
Quadratic fit to the surface-hopping transition rates as a function of a coupling biasing factor, κ, showing consistent proportionality with that
expected from the Fermi’s golden rule expression.
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effect of the scaled couplings on the surface hopping rates, only
relaxation events prior to the diabatic surface crossing (i.e.,
those induced by surface hops) are considered in the transition
rate statistics. In this way, a finite maximum lifetime was
effectively imposed on the excited state, leading to a nonzero
rate for the κ → 0 limit that was accounted for prior to the
collection of transition statistics.
A total of 10,000 independent trajectories were computed for

different values of κ to determine the mean (surface hopping)
lifetimes for each biasing strength. All trajectories were
initialized in the upper diabatic state and share common
classical initial conditions and model parameters (R(0) = −2,
Ṙ(0) = 0, A = 0.01, B = 1.6, C = 0.005, and D = 1.0). The
quadratic dependence of the FSSH transition rate on the
biasing strength (Figure A1) observed for the model problem
shows with a high degree of statistical certainty that average
hopping probabilities are consistent with the TDPT result for
certain ranges of biasing strengths and that hybrid dynamical/
perturbative methods are a promising direction for investigating
slow transitions via biased time-domain simulations.
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