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ABSTRACT: We present a reliable and cost-effective procedure for the inclusion
of anharmonic effects in excited-state energies and spectroscopic intensities by
means of second-order vibrational perturbation theory. This development is
made possible thanks to a recent efficient implementation of excited-state analytic
Hessians and properties within the time-dependent density functional theory
framework. As illustrated in this work, by taking advantage of such algorithmic
developments, it is possible to perform calculations of excited-state infrared spectra
of medium-large isolated molecular systems, with anharmonicity effects included in
both the energy and property surfaces. We also explore the use of this procedure
for the inclusion of anharmonic effects in the simulation of vibronic bandshapes of electronic spectra and compare the results
with previous, more approximate models.

1. INTRODUCTION

Molecular spectroscopy has become themethod of choice for the
study of all types of molecular systems, from small isolated
molecules to large supramolecular clusters in complex environ-
ments. Experimental breakthroughs have made the use of
spectroscopic techniques routinely available for both science and
industry, while parallel theoretical and computational develop-
ments have proved to be of great help in the interpretation
of experimental results, as well as suitable substitutes in the
investigation of novel systems thanks to their predictive powers.
After decades of theoretical work and computational effort, the
field has reached a certain level of maturity for medium-sized
isolated molecules in the ground state, for which spectroscopic
responses of high order can be simulated, from simple one-
photon absorption to resonance Raman optical activity.1,2 The
accuracy of a computed vibrational spectrum rests not only on an
appropriate choice of the underlying electronic structure method
(whether it be a choice of functional in density functional theory
(DFT) or wave function theory model) and basis set but also on
the level of theory chosen to describe the potential energy surface
(PES). The harmonic approximation is usually used for PES and
the property that induces the spectroscopic response (i.e., the
electric dipole moment for infrared absorption) also truncated to
the lowest order. It has however been shown that the inclusion of
anharmonic effects can be crucial for the simulation of accurate
vibrational spectra3−5 and to include vibrational effects in the
calculation of response properties.6−11 Anharmonic effects have
been extensively studied for molecules in the ground electronic

state; however, spectroscopic properties in excited electronic
states are much less known. In line with our efforts to develop
computational tools for the simulation of spectroscopic proper-
ties of molecular systems,12,13 in this contribution we fill this gap
by presenting the first fully anharmonic excited-state infrared
spectra calculated by means of second-order vibrational
perturbation theory (VPT2).14−20 VPT2 has been extensively
used in the past for predicting ground-state vibrational zero-point
energies and thermodynamic properties,21 as well as vibrational
spectra including infrared absorption, vibrational circular
dichroism,5,12 Raman,5 hyper-Raman,22 and Raman optical
activity,23 with anharmonicity effects being included in both
the force field and the property surface (mechanical and electric
anharmonicities, respectively). To develop a computationally
efficient method to include anharmonicity effects for excited
states of medium-large molecules, an indispensable ingredient
is the availability of analytical Hessians and property first
derivatives, which can be further numerically differentiated to
yield the anharmonic force constants. Thanks to recent develop-
ments,24−28 it is now possible to perform these calculations with
the inclusion of both electrical and mechanical anharmonicities
in the spectra. In addition, being able to model both ground and
excited state potential energy surfaces at the anharmonic level
allows for a more accurate prediction of vibronic couplings
which are responsible for the vibronic band shape in electronic
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absorption and emission spectra.29−35 In the following sections,
we recall the theoretical basis of the methodology, then present a
few applications of the method.

2. THEORY AND IMPLEMENTATION
2.1. Analytical TDDFT Second Derivatives. Various

developments have been carried out in recent years which have
led to improvements in ab initio methods needed to perform
VPT2 calculations, which require both high-order energy and
property derivatives. For the ground state, analytic formulas and
implementations of cubic and quartic force constants have been
proposed in the literature at the Hartree−Fock (HF) and DFT
levels.36−40 The recent development of analytical second-order
geometrical derivatives of excitation energies obtained using the
time-dependent density functional theory (TDDFT) and its
Tamm−Dancoff approximation (TDA)24−28 was instrumental
in extending computational spectroscopic techniques commonly
employed for molecules in the ground electronic state to
electronically excited systems. In particular, the proper treatment
of frozen-core and frozen-virtual orbitals and an efficient approach
to QM/MM systems including electrostatic embedding has made
it possible to obtain analytical excitation energy first and second
derivatives for very large systems (>3000 atoms).28

The application of VPT2 for studies of excited state molecular
vibrations requires the excited state energy third- and fourth-
derivatives (cubic and quartic terms). However, an implementa-
tion of the analytical TDDFT third- and fourth-derivatives is
impractical because it requires the very high order (up to sixth) of
the exchange-correlation functional derivatives whose stabilities
can be a challenge even at the second order. With the availability
of the excited state analytical Hessian, higher order derivatives
of the excited state energy can be computed using the finite
difference method which also avoids explicit computations of
high-order exchange-correlation functional derivatives.
2.2. Excited-State Anharmonic Force Field. Using the

excited-state analytic second derivatives of the potential energy, it
is possible to build the cubic and semi-diagonal quartic force
constants necessary to compute the vibrational energies at the
VPT2 level by numerical differentiation, in the same way as is
now commonly done for the ground state
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with Q the vector of mass-weighted normal coordinates, ω the
vector of harmonic wavenumbers, and k the matrix of second
derivatives of the potential energies with respect to the
dimensionless (q) normal coordinates.
The energy of a vibrational state of |m⟩ (in cm−1) is given by
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where vi
m is the number of quanta associated with mode i in state

m, ε0 is the zero-point vibrational energy, and χ is the matrix
containing the anharmonic contribution (see refs 41 and 42 for
the definition of ε0 and χ).
At the VPT2 level, not considering variational corrections, any

vibrational transition energy within a given electronic state can be
easily computed from eq 3. Formulas for the transition from
the ground state to fundamentals, first overtones, and 2-state
combinations are reported below,
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Similarly, provided that analytical first derivatives of the
properties of interest are available, it is possible to compute the
second and semi-diagonal third derivatives necessary to obtain
the anharmonic intensities through numerical differentiation as
well. An additional difficulty here is the absence of a unique and
compact formula applicable to every transition, and the most
effective form will depend on the initial and final states. Formulas
for transitions from the ground state up to 3 quanta can be found
in ref 41.
At variance, the computational cost of a full anharmonic

treatment for the simulation of vibronic spectra, even at the
VPT2 level, is too high but for the smallest molecules.43,44

Consequently, an alternative, more affordable way is needed to
deal with medium-to-large molecular systems. The approach
adopted here is to focus on the band positions. Following eq 3,
the transition energy between vibronic states | i⟩̅ and | ⟩f (the
single overbar refers to the initial electronic state and the double
bar to the final one) is
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where ΔEel is the difference of energy between the minima of
PES. Assuming that all transitions originate from the vibrational
ground state of the initial electronic state, which is the case at very
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low temperature, the previous equation can be recast as
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with “ ε εΔ = Δ + − ̅E E00 el 0 0” the energy difference between
the vibrational ground state of the two electronic states.
An alternative form of eq 5 can be derived using the VPT2

fundamental energies (ν1k)

∑ ∑ ∑ε ν χ χΔ = Δ + + − +
= = ≠

E v v v v v( 1)if
k

N

k
f

k

N

kk k
f

k
f

k l

N

kl k
f

l
f

00
1

1
1

k

(6)

3. COMPUTATIONAL DETAILS
All calculations were performed using the GAUSSIAN 16 suite
of quantum chemical programs.45 In this work, we used our
implementation5,21,23,42,46,47 of second-order vibrational pertur-
bation theory (VPT2) which can provide an accurate description
of both anharmonic vibrational energies and wave functions.
Anharmonic frequencies and IR absorption intensities were
calculated by numerically differentiating the analytical Hessian
and electric dipole first derivatives, with a step of δQi =
10 pm amu1/2 along each normal mode. The generalized VPT2
(GVPT2) model was used for the treatment of resonances.
The identification of Fermi resonances was done through a two-
step procedure based on the difference of energy between the
resonant states and the deviation of the VPT2 term from amodel
variational system. Terms identified as resonant were removed
from the VPT2 calculations and reintroduced subsequently
through a variational treatment, together with Darling−Dennison
resonances (see refs 21 and 42 for details).
Inclusion of anharmonic effects in vibronic calculations was

done with an alternate version of eq 6, where the corrective terms
based on the anharmonic χ matrix were ignored

∑ε νΔ = Δ +
=

E vif
k

N

k
f

00
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1k

In the past,48,49 we employed a simplified method for the
estimation of anharmonic effects for excited states based on
those of the ground state. The method involved the use of the
Duschinsky matrix, which relates the modes of the two states
through the following equation:50

̅ = +Q Q KJ (7)

where Q̅ and Q are the normal modes of the initial and final
electronic states, respectively, J is the Duschinsky matrix, andK is
the shift vector. Once the anharmonic fundamental energies of
the ground state ν are known, those of the excited state can be
estimated, in the case of absorption spectra, as
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In some of the following examples, this method will be revisited
in light of the new developments which allow the estimation of
anharmonic effects through perturbation theory.

All vibronic simulations were performed using the time-
independent framework via the sum-overstate method (see
refs 30 and 31.).
All molecules studied in the work are shown in Figure 1.

4. RESULTS AND DISCUSSION
4.1. Imidazole. We begin our discussion with imidazole, a

simple model system that is ideal for illustrating characteristics of
excited state vibrational spectra because of its small size and
reliability of data regarding the spectroscopic properties of this
molecule related to the vibrational degrees of freedom of the
excited state.49 All calculations on imidazole were performed
using the B3LYP51−53 functional and the aug-cc-pVTZ basis
set.54−56

Like any numerical differentiation scheme, a possible source of
error in the resulting anharmonic correction is a poor choice of
the differentiation step, which should ideally be small but not so
much that it leads to numerical errors due to the limited machine
precision as well as the finite convergence criteria of the various
steps in the calculation, such as the convergence on the SCF
energy and density, the TDDFT transition energy and densities
obtained through the Davidson algorithm,57 the convergence
criteria for the Coupled Perturbed Kohn−Sham (CPKS) and
Coupled Perturbed TD-DFT equations, the finite accuracy of the
DFT integration grid, and other numerical criteria. It might be
tempting to simply employ the same differentiation step we have
used in the past for ground-state calculations of 10 pm amu1/2,
which has been shown to yield reliable numerical derivatives.
However, an excited-state PES is generally expected to be “flatter”
than the ground state one; therefore, a different differentiation
stepmight be preferable. To verify this assumption, we performed
the anharmonic calculation on imidazole using multiple differ-
entiation steps spanning different orders of magnitude to
analyze the numerical stability of the results. Figure 2 displays
the 1, 11, and 21 modes of imidazole, and Figure 3 reports the
anharmonic energy and intensity for those modes. The first two

Figure 1. Molecules studied in this work.
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modes are bendings involving most of the atoms in the ring,
and the third is the NH stretching. Below a numerical value of
1 pm amu1/2, the results become unstable for all three modes
(more so for the lowest-energy one), while for the highest-energy
mode instabilities in the numerical energy and intensity starts to
appear at a value of 40. As shown in the figure, the ground-state
default value of 10 generally lies at the middle of a plateau in
the plots for both energies and intensities for all three modes,
confirming the reliability of the chosen numerical differentia-
tion step.
As mentioned in Section 3, in the past we employed a method

based on the Duschinsky matrix to estimate anharmonic effects
in the excited state. It was shown49 that a significant discrepancy
between the estimated and fully anharmonic results can be

Figure 2. Normal modes of imidazole in the excited state.

Figure 3. Anharmonic energies (blue squares) and intensities (red
diamonds) of imidazole calculated using different numerical differ-
entiation steps for three representative normal modes.

Figure 4. Structure of imidazole in the ground (red) and excited,
S1 electronic state (blue). The equilibrium structures have been
computed at the B3LYP/aug-cc-pVTZ level of theory.

Figure 5. Absolute difference between the anharmonic frequencies of
imidazole calculated using VPT2 and the Duschinsky-based method.

Figure 6. Harmonic (blue) and anharmonic (red) infrared spectra of
imidazole in the excited state. Broadening effects have been included
with Lorentzian broadening functions of 2 cm−1.
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observed when there is a large change in equilibrium geometry
between the two states. This analysis was possible by focusing on
states of different nature (such as the samemolecule in an ionized

form or in states of different spin multiplicity, which can
be numerically treated as ground states). Here, we extend the
analysis to the bright singlet π−π* transition. The equilibrium

Table 1. Harmonic, Anharmonic, and Extrapolated Frequencies forD0 andD1 states of Phenyl Radical Computed at B3LYP/SNSD
level

Mode Symm. Harm. S0 Anharm. S0 Harm. S1 Scal. S1 Anharm. S1

1 A1 400.134 390.917 299.660 292.846 289.887
2 B1 423.944 416.150 354.322 347.358 347.732
3 B2 594.236 588.095 527.707 522.086 528.533
4 A1 614.264 609.520 590.751 586.151 581.805
5 B1 667.807 650.805 682.305 674.965 665.291
6 B1 719.920 706.433 764.050 751.747 746.189
7 A2 814.178 792.719 787.816 767.042 767.253
8 A1 893.238 869.735 923.361 907.573 907.658
9 B1 968.277 941.104 966.685 941.689 938.953
10 A2 981.849 968.928 997.068 969.097 970.741
11 A1 995.120 968.135 999.879 985.481 982.110
12 A1 1014.756 999.397 1017.064 999.206 1001.350
13 B1 1046.795 1025.039 1024.006 997.041 995.905
14 B2 1068.810 1060.485 1048.727 1035.589 1040.082
15 B2 1171.064 1157.918 1118.088 1103.633 1093.978
16 A1 1171.845 1156.986 1213.744 1198.077 1193.132
17 B2 1302.373 1277.038 1241.510 1222.394 1219.820
18 B2 1334.222 1309.661 1349.836 1324.526 1320.665
19 B2 1459.878 1431.567 1395.244 1368.014 1372.508
20 A1 1467.893 1436.368 1442.357 1411.234 1411.309
21 B2 1571.771 1529.905 1521.746 1490.773 1484.554
22 A1 1629.513 1592.817 1632.013 1588.648 1578.686
23 A1 3159.398 3016.322 3137.459 2998.836 3026.061
24 B2 3165.760 3028.737 3137.860 3004.743 3003.548
25 A1 3179.364 3040.669 3160.153 3020.954 3008.177
26 B2 3181.599 3050.657 3165.820 3032.806 3029.222
27 A1 3191.353 3077.070 3184.981 3068.758 3073.908

Figure 7. Plot of the absolute value of the difference between the anharmonic frequencies for the D1 state of phenyl radical computed using the
extrapolation based on the Duschinsky transformation and at the VPT2 level. Electronic structure calculations have been performed at the
B3LYP/SNSD level.
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excited-state geometry for this system is also significantly
distorted with respect to the ground-state one, as displayed in
Figure 4. In Figure 5, the absolute difference between the

anharmonic frequencies of imidazole calculated using VPT2 and
Duschinsky-based method is plotted for each mode. The first few
modes are internal ring bendings, but the mode that shows the
greatest deviation is, unsurprisingly, mode 18 which is the C−H
stretching motion of the carbon that sits between the nitrogen
atoms and is the one that undergoes pyramidalization in the
excited state. The force field for that hydrogen atom is most
affected by the pyramidalization; thus, it is poorly described in
terms of contributions obtained from the ground state.
In addition to the energies, with the second and third

derivatives of the excited-state dipole, it is possible to calculate
the excited-state anharmonic infrared spectrum, including both
electrical and mechanical anharmonicities. The harmonic and
anharmonic spectra obtained this way are compared in Figure 6.
The difference between the two spectra is significant. In addition
to the expected redshift and the change in intensity of the
harmonic bands, numerous overtone and combination bands
enrich the spectrum. Unfortunately, to the best of our knowledge,
an experimental spectrum of excited gaseous imidazole is not
available for comparison.

4.2. Phenyl Radical.The next test case studied in the present
work is the phenyl radical. Spectroscopic techniques (usually
time resolved) are routinely used for the characterization
of radicals, and for the phenyl radical, the high-resolution
infrared58,59 and electronic60,61 spectra are available in the
literature. In particular, the importance of vibronic effects on
the electronic spectrum has been investigated by Kim and
co-workers62 and later by some of us63,64 using more refined
models, using anharmonic frequencies for the D1 state computed
through the extrapolation based on theDuschinsky transformation.
Following the same analysis as for the previous system, the
reliability of this approximation will be checked by computing the
anharmonic frequencies of the excited, D1 state at the VPT2 level.

Figure 8.Theoretical OPA spectrum for the D1←D0 transition of phenyl radical, computed at the AH|FC level using the harmonic frequencies for both
the electronic states (solid, red line), the anharmonic frequency for the S0 state and the extrapolated ones for the S1 state (solid, green line), and the
anharmonic frequencies for both states (solid, blue line). The experimental spectrum is also shown (dashed, black line).61 Broadening effects have been
included with Gaussian broadening functions of 75 cm−1.

Figure 9. Harmonic (blue) and anharmonic (red) infrared spectra of
antranilic acid. Broadening effects have been included with Lorentzian
broadening functions of 2 cm−1.
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The harmonic and anharmonic frequencies for the D0 and D1
electronic states of phenyl, computed at the B3LYP/SNSD level,
are reported in Table 1. This comparison shows that, in this case,
the extrapolation scheme based on the Duschinsky trans-
formation is significantly more reliable than for imidazole and
anisole (vide inf ra) since, for the majority of the modes, the
deviation between the extrapolated and VPT2 anharmonic
frequencies is below 10 cm−1. As shown in Figure 7, a graphical
representation of the deviation between the two sets of
frequencies, the largest difference is present for the higher-
energy frequencies, above 3000 cm−1, corresponding to the C−H
stretching modes. Those modes are usually affected by strong
anharmonic couplings, and therefore, the extrapolation scheme,
which assumes that the anharmonic correction to the PES is the
same for both the electronic states, is inaccurate. On the other
hand, for the other modes, the accuracy is better due to the
limited mode-mixing associated with the electronic transition.
The vibronic UV-absorption spectrum for the D1 ← D0

transition of the phenyl radical computed using three different
sets of frequenciesharmonic for both states, anharmonic
(VPT2) for both states, and anharmonic (VPT2) for the D0 state
and anharmonic (extrapolated) for the D1 oneis reported in
Figure 8. As already noticed before, the spectrum computed at
the harmonic level is shifted toward higher energies with respect
to the two anharmonic ones, which are nearly superimposable.
As discussed in our previous work,63 the main vibronic

progressions of the vibronic spectrum of phenyl correspond to
excitation of two modes (4 and 8) with low-frequency (below
1000 cm −1), and in this region, the extrapolation scheme is
reliable. Figure 8 also reports the experimental spectrum, shifted
by 873 cm−1 to more closely match the calculated ones at the
position of the first peak. The inclusion of anharmonicity effects,
using either scheme, generally improves the agreement with
the experiment for the higher-energy peaks in the vibronic
progression, for which the anharmonic shifts add up to noticeable
values.

4.3. Anthranilic Acid. We applied our method to the
calculation of the excited-state infrared spectrum of anthranilic
acid (Figure 1c), a molecule chosen because of its limited size,

Figure 10. Comparison between the calculated harmonic (blue),
anharmonic (red), and experimental65 (black) ground and excited state
infrared spectra of anthranilic acid. Assignment information refers to the
experimental peaks. Broadening effects have been included with
Lorentzian broadening functions of 2 cm−1.

Table 2. Comparison of Theoretical Frequencies, Computed
at Harmonic and Anharmonic Levels, of S0 Electronic State of
Anisole with Experimental Data, Taken from Ref 78a

Mode Harm. Anharm. HRAO

1 90.43 83.05 92.56
2 204.10 128.53 192.67
3 255.86 252.02 254.90
4 267.52 326.13 241.57
5 421.90 416.25 416.26
6 445.94 437.48 441.08
7 517.18 508.79 510.84
8 560.35 553.80 553.00
9 629.06 623.21 622.98
10 696.94 694.19 693.58
11 763.71 761.68 762.01
12 797.18 783.97 783.50
13 827.41 811.83 812.00
14 893.78 883.08 882.03
15 971.16 958.03 957.91
16 989.48 980.56 980.66
17 1009.26 994.05 994.35
18 1040.58 1024.13 1018.33
19 1065.01 1041.73 1041.20
20 1102.25 1082.63 1082.63
21 1169.31 1146.96 1144.84
22 1178.28 1164.19 1164.26
23 1194.35 1180.15 1179.14
24 1201.47 1178.01 1177.50
25 1271.41 1238.54 1238.48
26 1334.51 1303.56 1303.42
27 1356.98 1338.77 1339.16
28 1473.86 1440.00 1435.84
29 1484.96 1451.00 1450.62
30 1493.10 1454.16 1450.34
31 1505.53 1470.40 1470.69
32 1526.54 1497.62 1498.45
33 1624.19 1582.63 1582.76
34 1641.96 1601.25 1601.55
35 3002.56 2819.80 2812.86
36 3060.48 2894.14 2888.20
37 3131.99 2993.66 2991.28
38 3163.07 3005.47 3005.64
39 3170.49 3035.63 3035.83
40 3186.65 3044.40 3043.40
41 3193.97 3073.76 3074.75
42 3204.08 3087.85 3087.99

aElectronic structure calculations have been performed at the B3LYP/
6-311+G(d,p) level.
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structural rigidity, and because of the availability of experimental
data65 as well as theoretical simulations66 with which to compare
our computational results. For this system, we chose the B3LYP
functional,51−53 the same employed in a previous study,66 and
the SNSD basis set.67 In particular, we consider the first singlet
excited state (S1), hence, a π−π* transition. In the ground state,
the amino group is slightly pyramidalized, whereas in the excited
state the geometry is perfectly planar. Though in a previous
work66 the vibrational properties of the ground state were
evaluated after imposing a constraint on the molecule to preserve
the planarity, since our approach is rooted in perturbation theory,
it is imperative that the reference state be a true minimum;
therefore, we relaxed the symmetry constraint. The spectra are
shown in Figure 9. For both ground and excited states, inclusion

of anharmonic effects causes the bands to be redshifted,
especially those in the X-H stretching region (where X is a
heavy atom). Regarding the intensities, an interesting feature of
the anharmonic spectra is the change in the relative intensities
between the X-H stretchings and the bendings. In the harmonic
spectra, the two sets of bands have similar intensities, whereas the
in the anharmonic spectra the latter are somewhat quenched,
though this effect is not uniform and does not apply to every
band; thus, the inclusion of anharmonic effects on both energies
and intensities can be crucial for the analysis of the spectrum. In
Figure 10, we compare the calculated and experimental65 spectra
for both ground and excited states, limited to the X-H stretching
region. In the ground-state spectra, we can observe the expected
and significant redshift of all bands as anharmonicity effects
are considered. The anharmonic bands are much closer to the
experimental ones, though the anharmonic correction tends to
be too large in some cases. Intensities are also greatly improved
by the perturbative correction. In particular, the relative intensity
of the symmetric and antisymmetric N−H stretchings is
incorrect in the harmonic spectrum, where the latter has a larger
relative intensity, contrary to what can be observed in both
experimental and anharmonic spectra. The intensities of the
aromatic C−H stretching bands, however, are much higher in
the experimental spectrum compared to the calculated one,
and anharmonic effects do not significantly increase intensities
for these peaks. In the excited-state spectrum the agreement
between theory and experiment is significantly worse. The
relative intensity of the O−H stretching and free N−H stretching
bands is not inverted by including anharmonic effects (though
the frequencies still show excellent agreement). As in the ground-
state spectrum, the intensity of the aromatic C−H stretching
bands is much lower in the computed spectrum compared to the
experimental one. Furthermore, while theory successfully
predicts a very strong redshift in the H-bonded N−H stretching
band, which is accompanied by a very large anharmonic shift, the
intensity of this band is very low in the experimental spectrum,
while it is very high in the calculated one. These results show
that there is a need for extensive computational benchmarks
for excited-state properties in order to identify the best DFT
functional and basis set requirements to perform these types
of calculations. This type of study would require a wide set of
experimental data, possibly together with accurate calculations
performed using higher levels of theory, and is beyond the scope
of this work.

4.4. Anisole. The third test-case system studied in this work
is anisole (which is the methyl ester of phenol, the structure is
reported in Figure 1d). The spectroscopic properties of anisole
in gas phase have been characterized using a wide range of
experimental techniques, ranging from rotational68 to vibra-
tional69,70 and electronic spectroscopies.71−73 More recently,
dimers74 and van der Waals complexes of anisole have also been
characterized spectroscopically.75−77 From a theoretical point of
view, the high-resolution vibronic spectrum of free anisole has
been simulated by some of us78 using the Adiabatic Hessian
Franck−Condon model (AH|FC model, see refs 79 and 80 for
details) and the anharmonic frequencies of the excited electronic
state (S1) estimated using the extrapolation scheme introduced
in Section 2. As discussed in ref 78, this extrapolation scheme
provides a systematic improvement of the theoretical one-
photon absorption (OPA) spectrum compared to the exper-
imental one.73 Here, the reliability of the extrapolation will be
further tested by comparing those frequencies to the anharmonic
ones, computed at the GVPT2 level.

Table 3. Comparison of Theoretical Frequencies, Computed
at Harmonic and Anharmonic Levels, of S1 Electronic State of
Anisole with Experimental Data, Taken from Ref 73a

Mode Harm. Anharm. Scal. RD-HRAO Exp.73

1 63.05 272.66 61.15 62.95 66
2 78.41 84.36 74.11 86.76 85
3 135.76 90.19 103.59 151.79 140
4 196.89 214.57 210.66 193.91 197
5 253.58 232.57 249.76 248.92 256
6 374.48 368.27 370.57 383.23 372
7 436.26 429.32 428.05 431.20 421
8 439.95 501.03 433.04 472.27 436
9 517.18 500.15 511.86 505.59 509
10 527.70 514.24 522.45 513.39 524
11 546.03 539.85 540.06 537.23 538
12 600.76 639.13 592.84 607.36 595
13 625.72 625.95 622.66 620.75 620
14 678.51 732.90 671.15 706.93 670
15 780.78 765.32 767.82 765.47 772
16 856.76 848.28 848.53 839.50 845
17 973.59 952.92 958.66 956.29 960
18 989.52 969.66 972.93 970.60 972
19 1005.95 979.69 986.82 985.90 982
20 1034.30 1017.35 1013.94 1006.83 1008
21 1143.46 1120.22 1121.53 1115.68 1118
22 1151.93 1126.95 1136.58 1127.34 1127
23 1159.64 1140.87 1144.56 1141.35 1135
24 1183.19 1151.11 1161.45 1159.95 1161
25 1278.16 1236.68 1246.91 1236.95 1258
26 1309.62 1281.06 1282.96 1282.82 1277
27 1395.35 1359.16 1370.24 1359.78 1364
28 1419.44 1381.56 1386.67 1385.03 1389
29 1447.79 1400.48 1415.95 1402.13 1417
30 1457.23 1423.70 1423.11 1413.14 1424
31 1475.82 1437.98 1445.91 1441.32 1446
32 1482.91 1443.78 1444.21 1437.54 1443
33 1494.87 1448.56 1460.11 1452.44 1454
34 1521.22 1460.07 1483.56 1470.30 1482
35 3030.33 2935.65 2846.15 2933.33 2928
36 3099.48 2959.25 2931.04 2947.07 2980
37 3152.67 3008.49 3013.30 3006.01 3025
38 3170.29 3023.41 3022.15 3031.52 3042
39 3199.72 3088.89 3063.79 3050.99 3066
40 3207.43 3018.43 3058.30 3046.15 3078
41 3222.05 3122.60 3098.07 3102.47 3117
42 3228.20 3005.11 3109.82 3079.25 3128

aElectronic structure calculations have been performed at the B3LYP/
6-311+G(d,p) level.
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The harmonic and anharmonic frequencies of the ground and
excited electronic states are reported in Tables 2 and 3, together
with the experimental frequencies of the S1 state, taken from
ref 78. For the sake of consistency with our previous work,78

electronic structure calculations have been performed at the
B3LYP/6-311+G(d,p) level. For the ground electronic state,

a full, direct GVPT2 treatment leads to an overall lowering of
most of the frequencies, with the exception of the fourth mode
that displays an anharmonic correction of +59 cm−1. As emerges
from an hindered rotor analysis,81 this mode, together with the
lowest-energy one (with harmonic frequency ofω1 = 90.43 cm

−1),
corresponds to torsions about the two single C−O bonds of

Figure 11.Graphical representation of the anharmonicΥmatrix of anisole in the S0 (left panel) and S1 (right panel) states. The representation has been
obtained as follows: ElementsΥij

2 are calculated and normalized to 1. Then, a shade of gray is associated with each element (i,j) in the figure based on the
equivalence (0, white; 1, black). The normalization factor is 284.31 cm−1 for the S0 state and 648.64 cm−1 for the S1 state.

Figure 12.Graphical representation of the Duschinsky matrix J for the S1← S0 transition of anisole. The representation is obtained as already discussed
for Figure 11.
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the molecule. Such large-amplitude modes (LAMs) are highly
anharmonic and thus poorly described at a perturbative level based
on a quartic force field. In order to get more reliable results, all the
couplings between the LAMs and the other modes have been
canceled,82 and LAMs have been treated using the hindered rotor
model (the combined model is referred to as Hindered Rotor
Anharmonic Oscillator, HRAO).83 As shown in Table 2, for most
of the modes, the difference between the full dimensionality and
theHRAO results is below 2 cm−1, with the exception ofmodes 18,
28, 35, and 36. Therefore, the couplings between the two LAMs
and the other modes is not critical, and thus, the HRAO model,
where those couplings are neglected, is a satisfactory approach.
To further evaluate the extent of the coupling between the

modes, a graphical representation of the anharmonic Υ matrix

(defined in the Appendix) is reported in the left panel of
Figure 11. As expected, most of the couplings between the LAMs
(modes 1 and 4) and the other modes are nearly null, with the
exception of modes 35 and 36 (which are in fact among the ones
displaying the largest deviation between the full-dimensional and
the HRAO schemes).
For the excited, S1 state, modes 2 and 3 are the ones

corresponding to the torsions along the two C−O single bonds,
as confirmed by the graphical representation of the Duschinsky
matrix J, reported in Figure 12. In this case as well, the Υ matrix
(right panel, Figure 11) shows a coupling of those modes mainly
with mode 36. However, in addition to the two internal rotations,
an additional, low-frequency mode (with harmonic wavenumber
ω1 = 63.05 cm−1) is present. The plot of the Duschinsky
transformation shows that this mode corresponds to mode 5
of the ground state, with harmonic wavenumber of 421 cm−1.
As shown in Figure 13, this mode is an out-of-plane deformation
of the ring, and the lowering of its frequency is probably due to
the transfer of electron density to π* orbitals of the aromatic ring
upon electronic excitation, which makes the ring less stable.
The anharmonic frequencies of the S1 electronic state of anisole
computed at the VPT2 level, that are collected in Table 3, show
that full-dimensional VPT2 calculations lead to an unphysical
anharmonic correction for the first mode (anharmonic frequency
is approximately 3 times larger than its harmonic counterpart).
To obtain more reliable results, the force constants involving the
first mode have been neglected, and this mode has been treated
at the harmonic level.82 Furthermore, the two torsional modes
have been treated at the HRAO level, and the results (labeled as
reduced-dimensionality HRAO, RD-HRAO) are collected in
Table 3, together with the results obtained using the extra-
polation based on the Duschinsky transformation J. At variance
with the ground electronic state, in this case, the difference
between the full-dimensional and the RD-HRAO models is
more significant, above 2 cm−1 for the majority of the modes.

Figure 13. Graphical representation of the lowest-energy harmonic
mode of the S1 state of anisole computed at the B3LYP/6-311+G(d,p).

Figure 14.Graphical representation of the difference between the anharmonic frequencies computed at the VPT2 level and the ones determined using
the extrapolation based on the Duschinsky transformation.
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This means, in practice, that the coupling between the LAMs and
the other modes is larger than for the ground state, and therefore,
the difference between the reduced- and the full-dimensional

systems is higher. This result reveals that there is a significant
change in the anharmonic component of the PES between the
two electronic states, and in this case, the extrapolation technique

Figure 15. Comparison of the theoretical (TI AH|FC level) and experimental73 S1 ← S0 OPA spectrum of anisole. Theoretical spectra have been
computed using the harmonic frequencies for both the electronic states (solid red line), the anharmonic frequencies for the S0 state, and the extrapolated
ones for the S1 state (solid, green line) and the anharmonic frequencies for both the states (solid, blue line). Gaussian functions with an HWHM of
2 cm−1 have been used to reproduce broadening effects.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.7b00218
J. Chem. Theory Comput. 2017, 13, 2789−2803

2799

http://dx.doi.org/10.1021/acs.jctc.7b00218


based on the Duschinsky transformation is expected to work
poorly. In fact, as shown in Figure 14, the difference between the
anharmonic frequencies computed using the two approaches is
significant, above 20 cm−1 for several modes. It is noteworthy
that the difference is large not only for the low-frequency modes
but also for the higher-energy ones, with the largest deviation
occurring for mode 34. This further confirms that anharmonic
effects are significantly different for the two electronic states, and
the extrapolation technique is, in this case, inaccurate.
Finally, the anharmonic frequencies computed using both

approaches have been used to simulate the OPA spectrum of
anisole at the AH|FC level, following the procedure discussed in
Section 3. The results of the simulation are reported in Figure 15
and compared with the experiment from ref 73. Inclusion of
anharmonic effects for the S1 state, either using the extrapolation
approach or the VPT2 one, leads to an overall redshift of the
bands, with this shift being larger for the VPT2 frequencies than
for the extrapolated ones. This trend can be observed, for
example, in the region between 800 and 1500 cm−1 (with respect
to the 0−0 transition) of the spectrum, which is reported in the
middle panel of Figure 15 and is characterized by three intense
bands (at about 550, 750, and 950 cm−1, respectively). The
position of those bands is overestimated at the harmonic level,
and this inaccuracy is only partially corrected using the
extrapolated anharmonic frequencies. Frequencies computed at
the VPT2 level for both S0 and S1 electronic states provide even
better band positions, resulting in an overall improvement in the
quality of the spectrum. A similar trend is detected also for other
regions of the spectrum, even if in this case the agreement can be
less satisfactory, especially in the 0−500 cm−1 range. However,
this energy range contains large-amplitude motions, which could
not be treated at a satisfactory level of theory in the present study.

5. CONCLUSIONS AND PERSPECTIVES

In this paper, we have presented calculations of anharmonic fre-
quencies and infrared (IR) absorption intensities for molecular
systems in excited electronic states computed by means of
vibrational perturbation theory, as well as vibronically resolved
absorption spectra computed using the anharmonic frequencies
to model both ground and excited state potential energy surfaces.
These developments have been made possible thanks to the
availability of analytical TDDFT second derivatives,24−28 from
which numerical third and semi-diagonal fourth derivatives can
be evaluated, in addition to the second and third derivatives
of the molecular dipole moments which are responsible for the
so-called electrical anharmonicity of IR absorption spectra. In
addition, anharmonic corrections were also employed to obtain a
more accurate vibronic band shape for one-photon absorption
spectra.
The results show that the numerical differentiation scheme

commonly adopted for ground-state calculations can be carried
over to excited states without change. The treatment of
vibrational resonances, such as Fermi and Darling−Dennison
resonances, can also be applied in the same way, ensuring the
stability of the computed frequencies. The VPT2 strategy can
replace earlier methods for estimating excited-state anharmonic
frequencies, such as the Duschinsky-based method or simple
scaling methods. Having a solid theoretical foundation, the
applicability of the method is large, with the computational cost
of the numerical derivatives being the limiting factor, though the
latter can be run in parallel, reducing the time needed to obtain
the anharmonic force field.

There is still much work to be done in this field. The extension
of the current methodology to other types of vibrational
spectroscopies, such as vibrational circular dichroism (VCD)
or Raman scattering, is subject to the availability of analytical
excited-state properties and their derivatives (such as derivatives
of the electronic polarizability for Raman), so that their
numerical anharmonic derivatives may be computed. In addition,
the present study only considered isolated molecules, though in
the case of molecules in the ground state much work has been
done to include environmental effects in the calculation,
particularly in the case of solvation. Analytical TDDFTderivatives
have been presented for molecules coupled with both a
polarizable continuum84 and an atomistic classical environment.85

However, one difficulty is the correct identification of the
solvation regime that should be employed for such calculations,
especially in the case of continuum models, for which different
solvation regimes have been shown to drastically alter
spectroscopic responses, particularly when both electronic and
vibrational excitations are involved.49 A further improvement of
the model would be possible employing curvilinear internal
coordinates in the description of molecular vibrations. It has
been shown that, for vibronic spectroscopy, the use of internal
coordinates leads to a different, more diagonal definition of the
Duschinsky transformation.86,87 As a consequence, this would
increase the reliability of the extrapolation scheme discussed in
the present work. However, the use of this scheme would require
the calculation of anharmonic frequencies of the ground state at
the VPT2 level, which is far from being trivial, even if some pilot
works have been proposed recently in this direction.88,89

■ APPENDIX

Mode Coupling Analysis in VPT2 Calculations
The most compact notation for VPT2 vibrational energies (see
eq 3) uses a single matrix, at least for asymmetric tops, which
represents the anharmonic corrections, noted here as χ:
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While convenient for implementations, this form is not
suitable to analyze the contributions of a single mode or the
coupling between two modes to the energy of a given state. A
simple solution is to split χ in two matrices, Υ and Z, defined as
follows:

ω
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With those matrices, the vibrational energy becomes

∑ ∑ ∑ε ε ω= + + Υ + + +
= = =

⎡
⎣⎢

⎤
⎦⎥v v v v v( Z )

1
2

( )m
i

N

i
m

i
i j

N

ij
k

N

ijk i
m

j
m

i
m

j
m

0
1 , 1 1

(14)

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jctc.7b00218.

Ground and excited state geometries for all molecules
presented in this work (PDF)
Movie of normal Mode 1 depicted in Figure 2. (AVI)
Movie of normal Mode 11 depicted in Figure 2. (AVI)
Movie of normal Mode 21 depicted in Figure 2. (AVI)
Movie of normal mode depicted in Figure 13. (AVI)

■ AUTHOR INFORMATION
Corresponding Authors
*E-mail: xsli@uw.edu (X.L.).
*E-mail: vincenzo.barone@sns.it (V.B.).
ORCID
Franco Egidi: 0000-0003-3259-8863
Alberto Baiardi: 0000-0001-9112-8664
Xiaosong Li: 0000-0001-7341-6240
Author Contributions
⊥F. Egidi, D. B. Williams-Young, and A. Baiardi contributed
equally to this work.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We are thankful for the computer resources provided by the high
performance computer facilities of the SMART Laboratory
(http://smart.sns.it/). We acknowledge funding from the
European Research Council under the European Union’s
Seventh Framework Programme (FP/2007-2013)/ERC Grant
Agreement n. [320951]. The work was also supported by the
Italian MIUR (PRIN 2012 Grant 20129ZFHFE, PRIN 2015
Grants XBZ5YA and F59J3R). The development of TDDFT
second derivatives is supported by the U.S. Department of
Energy (Contract DE-SC0006863 to X.L.) The application to
studies of excited state spectroscopies is supported by the
National Science Foundation (Grant CHE-1565520 to X.L.).

■ REFERENCES
(1) Jensen, P.; Bunker, P. R. Computational Molecular Spectroscopy;
Wiley, Chichester, U.K., 2000.

(2) Barone, V. Computational Strategies for Spectroscopy: From Small
Molecules to Nano Systems; Wiley, Hoboken, NJ, 2011.
(3) Christiansen, O. Vibrational Structure Theory: New Vibrational
Wave Function Methods for Calculation of Anharmonic Vibrational
Energies and Vibrational Contributions to Molecular Properties. Phys.
Chem. Chem. Phys. 2007, 9, 2942−2953.
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