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ABSTRACT: The ab initio description of the spectral interior of
the absorption spectrum poses both a theoretical and computa-
tional challenge for modern electronic structure theory. Due to
the often spectrally dense character of this domain in the
quantum propagator’s eigenspectrum for medium-to-large sized
systems, traditional approaches based on the partial diagonaliza-
tion of the propagator often encounter oscillatory and stagnating
convergence. Electronic structure methods which solve the
molecular response problem through the solution of spectrally
shifted linear systems, such as the complex polarization
propagator, offer an alternative approach which is agnostic to
the underlying spectral density or domain location. This
generality comes at a seemingly high computational cost associated with solving a large linear system for each spectral shift
in some discretization of the spectral domain of interest. In this work, we present a novel, adaptive solution to this high
computational overhead based on model order reduction techniques via interpolation. Model order reduction reduces the
computational complexity of mathematical models and is ubiquitous in the simulation of dynamical systems and control theory.
The efficiency and effectiveness of the proposed algorithm in the ab initio prediction of X-ray absorption spectra is demonstrated
using a test set of challenging water clusters which are spectrally dense in the neighborhood of the oxygen K-edge. On the basis
of a single, user defined tolerance we automatically determine the order of the reduced models and approximate the absorption
spectrum up to the given tolerance. We also illustrate that, for the systems studied, the automatically determined model order
increases logarithmically with the problem dimension, compared to a linear increase of the number of eigenvalues within the
energy window. Furthermore, we observed that the computational cost of the proposed algorithm only scales quadratically with
respect to the problem dimension.

1. INTRODUCTION

With recent advances in laser light source technology, X-ray
absorption spectroscopy (XAS) has become an important
probative tool in chemical physics.1 The ability of XAS to
simultaneously characterize both the electronic and geometrical
structure of chemical systems has made it indispensable in the
fields of catalysis and photophysics.2−6 However, despite the
capability of XAS to obtain a wealth of chemically relevant
information, the complexity of experimentally obtained XAS
spectra often requires a theoretical supplement to obtain a
meaningful interpretation of the query phenomenon.7,8 Thus,
the ability to properly describe the high-energy electronic
excitations of molecular systems theoretically is critical in
modern electronic structure theory.
In light of its importance in physical chemistry, the prediction

of XAS properties poses an interesting challenge for traditional
electronic structure methods. This challenge is rooted in the fact
that the X-ray region is buried deep within the eigenspectrum of
the Hamiltonian and is often spectrally dense. For example, in
near edge X-ray absorption fine structure (NEXAFS) spectros-

copy, the spectrum consists of many excited states that
correspond to excitations of core electrons to diffuse quasibound
levels. Thus, as system sizes increase, the number of states in the
given energy region increases dramatically. Further, it is
important to note that because very large basis sets are often
required to properly describe the rather diffuse nature of these
excited states, the increase in complexity leads to poor scaling
with system size.
Many electronic structure methods have been extended to the

description of high-energy, X-ray electronic excitations in recent
years. In the time domain, real-time density functional theory9−11

has been shown to excellently reproduce the X-ray K-edge for
molecules within relatively short simulation times.12,13 For large
systems, however, time domain methods have difficulty taking
full advantage of concurrency on modern computing architec-
tures, and are thus not yet a sustainable avenue in routine
theoretical inquiry of these phenomena. In contrast, frequency
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domain approaches are often favored in these types of
calculations as they may be cast as computationally scalable
linear algebra problems which are well-suited for massive
concurrency. Frequency domain approaches to treat electronic
excitations may be separated into two categories which obtain
equivalent information: methods which aim to obtain a spectral
decomposition of the quantum propagator, i.e., eigenproblem
based methods, and methods which solve the response problem
directly through the solution of linear systems of equations.
Recasting electronic structure methods into eigenproblems

has long been the de facto standard frequency domain method for
electronically excited states. Through knowledge of the poles
(eigenroots) of the quantum propagator, one has direct access to
information regarding the electronic excitations (resonances) of
the molecular system. In addition, such a spectral decomposition
may be used to treat off-resonant perturbations through
interpolation schemes known as sum-over-states expressions.14

Much work has gone into the development of these methods in
both wave function theory, such as those based on the coupled-
cluster (CC)15−19 and algebraic diagrammatic construction
(ADC)20,21 expansions of the many-body wave function, and
self-consistent field theory, such as the linear response time-
dependent Hartree−Fock (TD-HF)22−25 and density functional
theory (TD-DFT).26,27 These methods have been shown to
accurately predict and reproduce both low-28,29 and high-
energy12,30−35 electronic excitations in molecular systems.
Despite their accuracy, however, eigenproblem based methods
possess an inherent challenge in the description of high-energy
excited states when the eigenroots of interest are buried deep in
the eigenspectrum. Traditional methods used to partially
diagonalize the propagator, such as the block-Davidson
method,36−38 are designed to converge to the extreme ends of
the eigenspectrum with no built-in mechanism to establish the
spectrum’s interior. Several approaches have been described to
overcome this problem,39 including energy specific30,32 and
restricted energy window methods33−35 when the eigenroots of
interest are well-separated. Further, in spectrally dense regions of
the propagator’s eigenspectrum, iterative diagonalization algo-
rithms require the resolution of many more roots than is often
practical to ensure smooth convergence.
Methods which solve the response problem through the

solutions of linear systems offer an attractive alternative to
eigenproblem based approaches in the description of high-
energy excitations because they have an intrinsic mechanism to
probe the interior of the energy spectrum. In these methods, the
probing frequency of the applied perturbation is a chosen
parameter.22,28 Thus, the interior of the spectrum is easily probed
through a number of solutions of linear systems of equations in
the desired frequency domain. This simplicity does, however,
come at a seemly significant computational cost compared to
eigenproblem based methods. While eigenproblems are able to
directly obtain many poles of the eigenspectrum simultaneously,
one must solve the linear problem many times over some
discretization of the frequency domain to obtain similar results.
In general, this discretization must be quite dense to achieve a
reasonable accuracy and thus can be more expensive than their
eigenproblem based counterparts. Approaches using linear
systems and based on the complex polarization propagator
(CPP), such as CPP-CC40−42 and CPP-SCF,14,28,43,44 have been
shown to be successful in the description of both high-
energy45−49 and low-energy50 properties of molecular systems
and have been extended to relativistic Hamiltonians as well.51

In this work, we introduce a general framework for the
prediction of spectrally interior molecular response properties
based on model order reduction (MOR) via interpolation. MOR
techniques have been successfully applied in different fields of
computation science and engineering, where the computational
complexity of mathematical models in numerical simulations is
reduced. Examples include structural dynamics, sound and
vibration analysis, and control theory.52 The MOR algorithm
proposed in this paper aims to overcome the large computational
overhead associated with the spectral discretization required by
linear system based methods while maintaining the accuracy
associated with eigenproblem based methods. Further, the
proposed algorithm will be shown to allow for the massively
scalable parallelism that is well-suited for modern computing
architectures.

2. LINEAR RESPONSE AND ABSORPTION SPECTRUM
In the semiclassical theory of molecular light−matter interaction
within the electric dipole approximation, the isotropic absorption
cross section for the interaction with plane-polarized light, σ(ω),
at a particular perturbing frequency, ω, is proportional to the
trace of the dynamic polarizability tensor, α(ω)

ασ ω ω ω ω ω η∝ ̃ ̃ = + i( ) Im(Tr[ ( )]) (1)

where η > 0 is a small damping parameter to ensure the
convergence of α in the spectral neighborhoods of resonant
perturbations. Within the linear response regime of the first-
order polarization propagator approximation (FOPPA),14 the
dynamic polarizability tensor may be written as

α ω ω̃ = ̃ =Τ −
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥d G d d

d d d

d d d
( ) ( )

x y z

x y z

1

(2)

Here, {di | i∈ {x, y, z}} is the set of dipole operators expressed in
the molecular orbital (MO) basis, and G(ω̃) is the first-order
polarization propagator. In the following algorithm develop-
ments, we restrict the discussion to the FOPPA using a Hartree−
Fock reference (TD-HF), although the algorithm presented is
completely general to any choice of propagator or reference.
Within TD-HF, G(ω̃) may be written as

ω ω̃ = − ̃G H S( ) (3)

where

= =
−

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥H

A B
B A

S
I 0
0 I (4)

with S = SΤ = S−1 and

δ δ= ϵ − ϵ + ||A ai bj( ) ( )ai bj ij ab a i, (5)

= ||B ab ij( )ai bj, (6)

Here, we have adopted the convention of denoting occupied
MOs with indices i, j, k, ..., and virtual (unoccupied) MOs with
indices a, b, c, ..., {ϵp} are taken to be the set of canonical
Hartree−FockMO eigenenergies. Themoieties (·||·) are theMO
basis representation of the antisymmetrized electron-repulsion
integrals in Mulliken notation. In this work, we restrict our
treatment to the use of strictly real MOs to allow for further
simplification of the working expressions.
In order to study the spectrum of the pencil (H, S) let
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Ω = =
− −

− ⎡
⎣⎢

⎤
⎦⎥S H

A B
B A

1

(7)

Although the matrix Ω is nonsymmetric, it has a number of
special properties.15,53,54 IfH is positive definite, it may be shown
that Ω possesses a structured eigendecomposition,24,55 i.e.

Λ
Λ− −

=
−

−
−

Τ⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥

A B
B A

U V
V U

0
0

U V
V U (8)

whereΛ = diag(λ1, ..., λn) consists of strictly positive eigenvalues,
and the eigenvectors are normalized with respect to the metric S

−
−

=
Τ⎡

⎣⎢
⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

U V
V U

U V
V U

I
(9)

As H is taken to be real in this work, it possesses additional
properties that may be exploited in the development of efficient
algorithms for estimating the absorption spectrum of the target
system. In particular, we may apply the following similarity
transformation

=
−

=− Τ⎡
⎣⎢

⎤
⎦⎥T

I I
I I

T T
1
2

1

(10)

to G(ω̃), yielding

ω ω̃ = − ̃Τ ⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥T G T

K 0
0 M

0 I
I 0

( )
(11)

where

≡ +M A B (12)

≡ −K A B (13)

which are, in most cases, positive definite. In this case, the
polarizability tensor may be reformulated as

α ω ω̃ = ̃ ̃ ̃ ̃ ̃ =Τ −d G d d d d d( ) ( ) [ ]x y z
1

(14)

where

ω ω̃ ̃ = − ̃G MK I( ) 2
(15)

Note that the dimension of G̃(ω̃) is only half the dimension of
G(ω̃). Furthermore, it can be shown that

Λ= − − ΤM X Y X Y( ) ( ) (16)

Λ= + + ΤK X Y X Y( ) ( ) (17)

and

− + =ΤX Y X Y I( ) ( ) (18)

such that the eigenvalues ±Λ may be computed by

Λ= − + ΤMK X Y X Y( ) ( )2
(19)

We note that, by making use of MK, the dimension of the
eigenvalue problem is also reduced by a factor of 2.56,57

3. MODEL ORDER REDUCTION OF LINEAR
DYNAMICAL SYSTEMS

In this section, we briefly review the theory of model order
reduction for linear dynamical systems. The next section will
examine its connection to the computation of the absorption
spectrum within the FOPPA.
3.1. Linear Dynamical Systems. We consider the linear

multiple-input multiple-output (MIMO) system

Σ =
− =

= Τ⎪

⎪⎧⎨
⎩

s s u s

s s

H S x b

y c x

( ) ( ) ( )

( ) ( ) (20)

where s is a derivative or shift operator, ∈ ×H n n and ∈ ×S n n

are the system matrices, ∈ ×b n m, and ∈ ×c n p. We call n the
dimension (order) of the system Σ, ∈ ×x n m the state vector,

∈ u the input, and ∈ ×y p m the output.52 Note that the
system Σ is completely characterized by the quadruple (H, S, b,
c).
The transfer function, γ(s), of Σ is defined as

γ = −Τ −s sc H S b( ) ( ) 1 (21)

and describes the relation between the input and output of Σ, i.e.,
y(s) = γ(s)u(s). For the remainder, we will assume that n≫ 1, m
≪ n, p ≪ n, and u(s) ≡ 1 for all s.

3.2. State Space Transformation. In some cases, it might
be more advantageous to describe the system from a point of
view different from the original one. In these cases, we may
perform a nonsingular state transformation T, i.e., det(T) ≠ 0,
yielding the transformed state

̃ = −x T x1 (22)

of the transformed system

Σ̃ =
̃ − ̃ ̃ = ̃

= ̃ ̃Τ⎪
⎪⎧⎨
⎩

s s u s

s s

H S x b

y c x

( ) ( ) ( )

( ) ( ) (23)

where H̃ = T−1HT, S ̃ = T−1ST, b̃ = T−1b, and c ̃Τ = cΤT. We note
thatΣ and Σ̃ admit the same transfer function as well as the same
output. Therefore, we call the systems Σ and Σ̃ equivalent.

3.3. Reduced Order Models. The evaluation of the transfer
function of a system Σ requires a linear system solve for every
value of s. In cases where the system dimension n is large and a
high resolution is required, i.e., a high number of values of s, the
evaluation of the transfer function is very expensive. In this work,
we examine the effectiveness of model order reduction (MOR)
techniques to circumvent this expense. MOR for linear
dynamical systems is a technique that approximates a system Σ
by another system Σ̂ of the same form but of a much lower
dimension (order) k≪ n. Consequently, evaluating the transfer
function of Σ̂ is relatively inexpensive as it only involves linear
system solves of dimension k instead of linear system solves of
dimension n for Σ.
Let the system Σ be given by eq 20 and define a nonsingular

matrix ∈ ×V n k with orthonormal columns, i.e., VΤV = I. Then,
a reduced order model Σ̂ can be constructed by applying a
Galerkin projection P = VVΤ onto Σ, yielding

Σ̂ =
̂ − ̂ ̂ = ̂

̂ = ̂ ̂Τ⎪
⎪⎧⎨
⎩

s s u s

s s

H S x b

y c x

( ) ( ) ( )

( ) ( ) (24)

where Ĥ =VΤHV, Ŝ =VΤSV, b̂ =VΤb, and cΤ̂ = cΤV. Note that the
length of the state vector x ̂ and the dimension of Σ̂ are only k≪
n. The purpose of MOR is to construct a V such that the transfer
function of Σ̂ approximates very well that of Σ

γ γ≈Σ Σ̂s s( ) ( ) (25)

for all queries s.
3.4. Model Order Reduction via Moment Matching.

One way to construct a matrix V such that eq 25 holds is by
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examining the concepts of moments and moment matching.52

Let the transfer function γ of Σ be given by eq 21. Then the lth
moment of γ around the point s = s★ is defined as the lth
derivative of γ evaluated at s★, i.e.

γ= − |★ = ★
s

s
sm ( ) ( 1)

d
d

( )l
l

l

l s s (26)

for l ≥ 0. Consequently, since γ(s) = cΤ (H − sS) −1 b, the
moments at s★ are

= − >★
Τ

★
− + ls sm c H S b( ) ( ) 0l

l( 1)

Note also that the moments determine the coefficients of the
Taylor series expansion of the transfer function γ in the
neighborhood of s★

γ = +
−

!
+

−
!

+★ ★
★

★
★s s s

s s
s

s s
m m m( ) ( ) ( )

1
( )

( )
2

...0 1 2

2

(27)

Model order reduction via moment matching consists of
constructing a subspace ∈ ×V n km such that the original and
reduced order model match moments

= ̂ =s s j km m( ) ( ) 1, ...,i j i jj j (28)

If all moments to be matched are chosen at zero, i.e., sj = 0 for j =
1, 2, ..., k, the corresponding model is known as a Pade ́
approximation. In the general case, the problem in eq 28 is
known as rational interpolation and can be solved by choosing
the projection matrix V such that

= − − −− − −s s sV H S b H S b H S bspan[( ) ,( ) , ...,( ) ]k1
1

2
1 1

(29)

It can be shown that thematrixV defined in eq 29 spans a rational
Krylov subspace and matches all the zeroth moments at sj. For
more information about the connections between moment
matching and rational interpolation, we refer the interested
reader to Section 11 of Antoulas’model order reduction book.52

4. ESTIMATING ABSORPTION SPECTRUM WITHOUT
EXPLICITLY COMPUTING EIGENVALUES AND
EIGENVECTORS

The most straightforward way to evaluate the absorption
spectrum is to compute eigenvalues and the corresponding
eigenvectors of (H, S). However, as we indicated earlier, when
the dimension of H and S becomes large (spectrally dense), this
approach can be prohibitively expensive (complicated).
It has been shown58 that a special K-inner product Lanczos

algorithm can be used to provide a good approximation to the
overall structure of the absorption spectrum without explicitly
computing the eigenvalues and eigenvectors of (H, S). In
particular, the Lanczos algorithm can reveal major absorption
peaks in the low-frequency region of the spectrum without too
many iterations. However, the algorithm gives limited resolution
of the absorption spectrum in the spectral interior as the Krylov
subspace constructed by the Lanczos iteration contains little
spectral information associated with interior eigenvalues of (H,
S).
We now propose an alternative way to evaluate the absorption

spectrum without explicitly computing the eigenvalues and
eigenvectors of (H, S). This scheme focuses on approximating
the dynamic polarizability tensor α(ω̃) defined in eq 2 and the

absorption spectrum σ(ω) defined in eq 1 within a specific
energy window directly.
First, observe that the dynamic polarizability tensor (eq 2)may

be viewed simply as the expectation value of the inverse of H −
ω̃S. Hence, the evaluation of α(ω̃) may be recast into a problem
of solving linear equations; i.e., for a specific frequencyω, we can
directly evaluate the absorption spectrum (eq 1) as follows

σ ω ω ω∝ ̃Τd x( ) Im(Tr[ ( )]) (30)

where x is the solution of the linear system

ω ω− ̃ ̃ =H S x d( ) ( ) (31)

Second, the dynamic polarizability tensor (eq 2) may also be
viewed as the transfer function, i.e., the relation between input
and output, of the linear dynamical system (see Section 3.1)

ω ω

ω ω

− ̃ ̃ =

= ̃Τ⎪

⎪⎧⎨
⎩

H S x d

y d x

( ) ( )

( ) ( ) (32)

Consequently, the absorption spectrum can directly be obtained
from the output variable y

σ ω ω ω∝ y( ) Im(Tr[ ( )]) (33)

In order to evaluate the output y of system (eq 32) for a given
frequency, we again need to solve a linear system of the form in
eq 31.
Finally, by exploiting the block structure ofH and performing a

state space transformation with eq 10 (see Section 3.2), we
obtain an equivalent linear dynamical system for eq 32, but with a
halved order

ω ω

ω ω

− ̃ ̃ ̃ = ̃

= ̃ ̃ ̃Τ⎪
⎪⎧⎨
⎩

MK I x d

y d Kx

( ) ( )

( ) 2 ( )

2

(34)

such that we obtain the following, compact expressions for the
dynamic polarizability tensor

α ω ω̃ = ̃ − ̃ ̃Τ −d K MK I d( ) 2 ( )2 1
(35)

and the absorption spectrum

σ ω ω ω∝ ̃ − ̃ ̃Τ −d K MK I d( ) Im(Tr[ ( ) ])2 1
(36)

Note that the dimension of the linear systems to be solved in eq
36 is only half of the dimension of the linear system shown in eq
31.
Clearly, we cannot afford to evaluate σ(ω) for all ω’s of

interest. However, this connection to linear dynamical systems
allows us to employMOR techniques (see Section 3.3) to reduce
the number of σ(ω) evaluations in the full dimension. More
precisely, we construct a function σ̂(ω) that approximates σ(ω)
within a specific energy window [ωmin, ωmax], but is much
cheaper to evaluate. The construction of such an approximate
function only requires solving a few linear systems of the form in
eq 31 or 34 at a few selected frequencies τj, j = 1, 2, ..., k. The
solutions of these linear systems are then used to construct a
reduced order model which interpolates the full dynamic
polarizability at τj, and provides an approximation to the dynamic
polarizability tensor (eq 2) at other frequencies within the
predefined energy window. When k is small, both the
construction and the evaluation of the reduced order model
are significantly lower than other approaches that are either based
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on solving an eigenvalue problem or eq 31 at many different
frequencies.

5. INTERPOLATION BASED ALGORITHMS
Let the dimension of matrix H defined in eq 4 be 2n × 2n. The
dimension of the lower dimensional matrix Ĥ that we construct
for the reduced order model is 3k × 3k, where k≪ n. One way to
construct such amatrix is to first construct a subspace spanned by
orthonormal columns of amatrix ∈ ×V n k2 3 and then projectH
onto such a subspace V, i.e.

̂ = ΤH V HV (37)

If we also let S ̂ = VΤSV and d̂ = VΤd, then the absorption
spectrum can be approximated by

σ ω ω ω̂ ∝ ̂ ̂ − ̃ ̂ ̂Τ −d H S d( ) Im(Tr[ ( ) ])1
(38)

Clearly, the choice of subspace V is crucial in maintaining the
fidelity of the reduced order model. The subspace we use to
construct the reduced order model takes the form

τ τ τ= − − −− − −V H S d H S d H S dspan[( ) , ( ) , ..., ( ) ]k1
1

2
1 1

(39)

where τj, j = 1, 2, ..., k are the interpolation frequencies carefully
chosen within the energy window of interest to ensure that

σ ω σ ω≈ ̂( ) ( ) (40)

for allω in the energy window of interest. It follows from the way
V is constructed in eq 39 that α̂ interpolatesα at the interpolation
frequencies, i.e.

α ατ τ= ̂ =j k( ) ( ) 1, 2, ...,j j (41)

Furthermore, since the linear systems eqs 32 and 34 have
symmetric system matrices (H, S) andMK, respectively, and the
input and output matrices b and c are linearly dependent, the
Galerkin projection becomes a Petrov−Galerkin projection.52

Hence, the original systems eqs 32 and 34 and the corresponding
reduced order systems of dimension k match 2k moments
instead of only k moments in the general case.52 In other words,
we can obtain the same accuracy for the reduced order models

with fewer interpolation frequencies than the general (non-
linearly dependent) case.
Algorithm 1 summarizes the construction of the reduced order

model and how it is used to obtain an approximation of the
absorption spectrum within an energy window of interest.
Clearly, the higher the model order k is, the more accurate the
approximation is. In the next section, we will show that, even for a
relatively small k, we can obtain a quite accurate approximation
for σ(ω) in an interior spectral window that contains thousands
of eigenvalues.

Although algorithm 1 provides a general framework for
constructing a reduced order model for estimating the
absorption spectrum defined by (H, S), it is more efficient to
exploit the structure of (H, S) and construct a reduced order
model for eq 34 instead. Such a reduced order model may be
obtained by projecting eq 34 onto a subspace defined by

τ τ

τ

̃ = − ̃ − ̃

− ̃

− −

−

V MK I d MK I d

MK I d

span[( ) ,( ) ,

..., ( ) ]k

1
2 1

2
2 1

2 1
(42)

where τj, j = 1, 2, ..., k are again the interpolation frequencies.
Because the matrixMK is self-adjoint with respect to the K-inner
product, it is more convenient to carry out the projection using
theK-inner product and projectingMK onto a subspace spanned
by a K-orthonormal basis; i.e., ṼΤKṼ = I is satisfied. If we let

= ̃ ̃̂ ΤMK V KMKV (43)

Figure 1. Adaptive refinement strategy for selecting the interpolation frequencies.
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̂ = ̃ ̃Τd V Kd (44)

then the approximation to the absorption spectrum provided by
the structure exploiting reduced order model can be expressed by

σ ω ω ω̂ ∝ ̂ − ̃ ̂̂Τ −d MK I d( ) Im(Tr[ ( ) ])2 1
(45)

By exploiting the block structure of H, we can prove that eqs 38
and 45 are equivalent. However, the latter is cheaper to construct,
both in terms of the number of floating point operations and
memory usage, since it only involves matrices of size n × n and
vectors of size n. The structure exploiting the model order
reduction algorithm for approximating the absorption spectrum
is outlined in algorithm 2.

Note that both algorithms 1 and 2 require a choice of the
interpolation frequencies τj. The number of these interpolation
frequencies and their locations solely determine the quality of the
absorption spectrum approximations. The simplest way to
choose these interpolation frequencies is to partition the energy
window of interest evenly by a uniform interpolation grid.
However, because the absorption spectrum can be highly
oscillatory in certain regions within the energy window, a very
fine gridmay be needed to resolve the high oscillation. As a result,
the order of the reduced order model, which is proportional to
the number of interpolation frequencies, can be exceedingly high.
A more effective strategy for choosing the interpolation

frequencies is to choose these frequencies in an adaptive fashion.
We now propose a refinement strategy, which is graphically
illustrated in Figure 1. To start this procedure, we choose in the
first level a coarse, uniform grid of interpolation frequencies
(marked by black square) to construct the level-1 reduced order
model. The set of interpolation frequencies is refined by adding
the midpoints (marked by black triangle) between two adjacent
level-1 interpolation frequencies. This enlarged set forms the
second level of interpolation frequencies, yielding a more
accurate level-2 reduced order model. Next, we choose the
midpoints between two adjacent level-2 interpolation frequen-
cies as candidates (marked by open circle) to enlarge the set in
the third level. We also estimate the approximation error by
computing the relative difference between the level-1 and level-2
reduced order models for the entire energy window. If the error
estimate at an interval between two adjacent level-2 interpolation
frequencies is above a prescribed error tolerance, the midpoint
(marked by black circle) is added to the existing set of
interpolation frequencies. The enlarged set results in an even

more accurate level-3 reduced order model. This refinement
process continues until the error estimate at the entire energy
window is below the threshold or when the refined model order
exceeds a prescribed upper bound.

6. COMPUTATIONAL RESULTS
The proposed automatic MOR algorithm has been implemented
in the Chronus Quantum software package59 and in MATLAB
(https://bitbucket.org/roelvb/mor4absspectrum). The follow-
ing numerical experiments were performed using a single
Sandy−Bridge Intel Xeon compute node (E5-2650v2@2.60
GHz) with 16 cores and 512 GB DDR3 RAM. All of the water
cluster test cases were performed using the 6-31G(d) basis set
without the use of molecular symmetry and were chosen for their
dense spectral character in the X-ray spectral domain. All of the
geometries for the water clusters used in this work may be found
in the Supporting Information.
The implementation of the MOR utilizes a synchronized

approach to the Generalized Minimum Residual (GMRES)60

algorithm for the solution of the linear systems. In this
approach,61 each linear system is solved individually via the
standard GMRES algorithm, but its matrix-vector products
(GEMVs), which constitute the dominant cost, are synchronized
and performed in batches. Hence, the GEMVs become matrix−
matrix products (GEMMs) and allow for optimal efficiency and
cache utilization through the use of level 3 BLAS operations. In
all experiments we used a block size of 12, coming from
combining the 3 dipole vectors at 4 interpolation frequencies.
Several numerical experiments were performed to demon-

strate the performance and accuracy of the proposed MOR
algorithms. Since the interpolation points are merely used to
construct a reduced order model, it is conceivable that we may
choose them to be real numbers instead of complex numbers that
contain a small imaginary damping factor. The advantage of
choosing real interpolation points is that all linear systems can be
solved in real arithmetic. However, as we will see below, this
approach may not lead to any performance gain and can even
lead to a performance degradation.
We also examined how the order of the reduced order model

changes as the damping factor η changes and as the size of the
molecular system increases as well as the overall computational
scaling of the proposed method using the aforementioned water
clusters. Numerical comparisons are made to the Lorentzian
broadened poles of the propagator using the oscillator
strengths.62−64 The eigenvalues and oscillator strengths were
computed via BSEPACK55,65 on a Cray XC40 with Haswell Intel
Xeon compute nodes (E5-2698v3@2.3 GHz, 2 × 16 cores, 128
GB DDR4 RAM). The broadening factor was set equal to η for
comparison with the approximate MOR experiments.

6.1. Real versus Complex Interpolation Frequencies.
We start with a cluster of 5 water molecules and are interested in
computing the absorption spectrum in the energy window [540
eV, 600 eV]. The dimension of the matrix H (eq 4) was 2n =
6500, and H had 394 eigenvalues in the energy window. The
damping factor was η = 1 eV, and the tolerance for solving the
linear systems was set to 10−6. The damping factor was chosen to
roughly mimic the effects of the core-hole lifetime of the K-edge
transitions in oxygen and vibrational broadening.66 It is
important to note that the broadening due to the damping
parameter in these simuluations is purely phenomenological, as
no vibronic effects are being explicitly treated.
In the first experiment, we used a fixed order k = 32 for the

reduced order models and only changed the interpolation
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frequencies τj, j = 1, 2, ..., k. We computed the absorption
spectrum by algorithms 1 and 2 for both real τj =ωj and complex
τj =ωj + iη, whereωj values were uniformly selected in the energy
window. The corresponding results are presented in Figure 2 and
in the top part of Table 1. Note that, by using complex
interpolation frequencies τj, we obtained good approximations of
the absorption spectrum from both algorithms 1 and 2 even with
such a small model size. On the other hand, the use of real τj
resulted in poor approximations for both algorithms. This is due
to the fact that the (real) interpolation frequencies are often very
close to the (real) eigenvalues of (H, S) or MK, resulting in ill-
conditioned linear systems being solved. However, this can be
avoided with complex interpolation frequencies.
Next, we repeated the previous experiment but chose the

interpolation frequencies via the adaptive refinement strategy
introduced in Section 5. As the error estimates, we used the
difference of the normalized absorption spectrum between two

consecutive refinement levels. The tolerance was set to 0.01,
which corresponds to a 1% change in the overall absorption
spectrum on the window [540 eV, 600 eV]. This resulted in
reduced order models of different orders k, reported in the
middle part of Table 1. We observe that, in terms of the order k,
the use of complex interpolation frequencies has a significant
advantage over the use of real frequencies. Further, we also
observe that the adaptive refinement strategy for algorithms 1
and 2 resulted in very similar orders k when the same types of
interpolation frequencies are used.
The corresponding computational expense for the previous

two experiments is reported in Table 1 using various metrics. We
observe that, for both fixed and adaptive model orders, the
computational cost required for algorithm 2 was significantly
lower than that of algorithm 1. This is expected as both methods
are mathematically equivalent and the former only deals with
linear systems of half the dimension of the latter. Furthermore,

Figure 2.Numerical experiments for the evaluation of the XAS spectrum of 5 H2O clusters by the proposed MOR algorithms using a fixed model order
(k = 32). The MOR results are compared to the Lorentzian broadened poles of the propagator, labeled eigensystem. A damping parameter of 1 eV was
chosen both for theMOR calculations and the broadening factor of the Lorentzians for the reference. It can be seen that the use of complex interpolation
frequencies for the construction of the model basis is important in spectrally dense regions.
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although real interpolation frequencies allow us to solve only real
linear systems, we observe that, in the case of adaptively chosen
model orders, the drastic decrease in model order required for
complex interpolation frequencies over real frequencies offsets
this advantage. Finally, we note at the bottom of Table 1 that the
use of algorithm 2 with complex interpolation frequencies
reduces the computational expense by a factor of almost 10
compared to conventional complex polarization propagator
calculations on a fine grid.
6.2. Computational Scaling. We now consider water

clusters consisting of 5, 10, 15, 20, and 25 water molecules. The
corresponding matrix dimensions are shown in Table 2. The
energy window [540 eV, 600 eV] and damping factor η = 1 eV
were the same as for the previous experiments. We computed the
absorption spectrum via algorithm 2 with complex interpolation
frequencies chosen adaptively. The obtained absorption spectra
are shown in Figure 3.
The MOR results are given in Table 2, where we present the

orders k of the reduced order models, the total number of
GEMMs, and the total wall-clock time for different GMRES
convergence tolerances. First, we observe that the order k of the
reduced order models increases sublinearly with the number of
waters, whereas the number of eigenvalues inside the energy
window, #λ, grows linearly with respect to the problem
dimension. Second, the order k decreases for increasing
GMRES convergence tolerances. This is due to the fact that if
we solve the linear systems less accurately, we match the
moments less accurately and hence we need more interpolation

points (a higher value of k) for the same accuracy of the reduced
order model and the corresponding absorption spectra. More-
over, the order k seems to stagnate around GMRES tolerance
10−5, and there were no visual differences any more between the
obtained absorption spectra for GMRES tolerances 10−5 and
10−6.
The total wall-clock time and number of GEMMs are also

shown in Figure 4. The left figure illustrates that the wall-clock
time scales quadratically with respect to the problem dimension,
compared to a cubic scaling for a full diagonalization. Moreover,
the right figure shows that the number of GEMMs only scales
logarithmically, compared to an expected linear scaling for
iterative eigensolvers since the number of eigenvalues inside the
energy window grows linearly. It is worth noting that the vector
space dimension of the linear problem also scales quadratically
with system size.

6.3. Effect of Damping Factor.We examine the effect of the
damping factor on the overall effectiveness of the proposedMOR
algorithm in the low damping limit. We revisit the case of water
clusters containing 5 water molecules from the previous
subsections over the same energy window. Specifically, we
examine the effect on the damping parameter η ∈ [0.1, 1] eV on
the model order required to achieve a convergence of 1% in the
absorption spectrum. The MOR results were obtained via
algorithm 2 using adaptively chosen complex interpolation
frequencies. The resulting spectra are presented in Figure 5a−c.
The effect of the damping factor on the automatically selected

model order is illustrated in Figure 5d. In this figure, we observe
that by decreasing the damping factor the reduced model order k
first remains almost constant until 0.5 eV and then starts to
slightly increase for smaller values of η. Even in the low damping
limit (0.1 eV), when the obtained absorption spectrum is
exceptionally complicated and oscillatory relative to the previous
experiments (1 eV), the required model order is still well within
the realm of practicality for routine calculations. Thus, the
proposed MOR algorithm may be used as a general procedure
which requires no assumption of (the smoothness of) the
underlying absorption spectrum.

7. CONCLUSION

In this work, we have presented a novel, adaptive algorithm for
the ab initio prediction of the absorption spectrum based on
model order reduction techniques applied to the quantum
propagator. While this approach is general to any spectral
domain, the power of the proposed method is in those spectral
domains which are dense and interior in the propagator’s
eigenspectrum. The accuracy and efficiency of this method to
predict the X-ray absorption spectrum have been demonstrated

Table 1. Effect of Using Real and Complex Interpolation
Frequencies τj on the MOR Evaluation of XAS Spectra for 5
H2O Clustersa

algorithm k GEMMs wall (s)

algorithm 1: real τj 32 1052 19.76
algorithm 1: complex τj 32 776 40.97
algorithm 2: real τj 32 985 9.78
algorithm 2: complex τj 32 646 17.50

algorithm 1: real τj 218 7440 137.01
algorithm 1: complex τj 87 2285 115.50
algorithm 2: real τj 211 6541 65.31
algorithm 2: complex τj 87 2026 52.70

conventional CPP (1000 points) 18 126 538.90
aComputational expense for algorithms 1 and 2. Here k is the reduced
order. GEMMs is the total number of matrix−matrix products, and the
total wall-clock time is given in seconds.

Table 2. Numerical Experiments for the Evaluation of the XAS Spectrum of Variably Sized H2O Clusters via Algorithm 2 with
Adaptively Chosen Complex Interpolation Frequenciesa

waters GMRES tol = 10−4 GMRES tol = 10−5 GMRES tol = 10−6

# n #λ k GEMMs wall (s) k GEMMs wall (s) k GEMMs wall (s)

5 3250 394 76 968 27.2 87 1654 43.4 87 2025 52.7
10 13 000 1456 99 1749 636.2 83 2404 867.1 82 3235 1157.0
15 29 250 3183 99 2221 4141.8 82 2946 5511.9 82 4018 7534.4
20 52 000 5524 123 2742 14 665.8 89 3317 17 807.0 91 4594 25 656.5
25 81 250 8530 123 2610 34 128.8 95 3694 47 697.1 94 5020 65 284.1

aHere, MK is of dimension n with #λ eigenvalues lying within the energy window [540 eV, 600 eV]. The comparisons are made for GMRES
convergence tolerances of 10−4, 10−5, and 10−6, with k as the reduced model order, GEMMs as the total number of matrix−matrix products, and the
total wall-clock time given in seconds.
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using a series of water clusters. Water clusters were chosen as an
especially challenging case study as the propagator is spectrally
dense in the spectral neighborhood of the water’s oxygen K-edge.
The numerical experiments have shown that complex
interpolation frequencies should be preferred over real ones
and that in this case the order of the reduced order models only
slightly increased with the problem dimension, in contrast to the
rapid growth of the number of eigenvalues inside the energy
window. Moreover, the wall-clock time for the proposed model
order reduction algorithm scales only quadratically with respect
to the dimension of the problem, compared to cubic scaling for
eigenvalue based algorithms. Further, it was shown that, even in
the limit of highly oscillatory and low damping absorption
spectra, the proposed algorithm remains practical and thus may
be treated as agnostic to the underlying nature of the spectrum.
While results were presented only for the TD-HF method, the
proposed adaptive MOR algorithm is general to any choice
reference, propagator, or perturbation. Further, although it is not

expressly considered in this work, this technique is well-suited for
parallelism on a massive scale as each of the linear system
solutions is completely independent from the other, thus
allowing for minimal communication. With the proposed
MOR algorithm, routine study of X-ray absorption spectra for
medium-to-large sized systems is simplified.
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