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Abstract. An integration and assembly strategy for efficient evaluation of the exchange correlation term in
relativistic density functional theory within two-component Kohn–Sham framework is presented. Working
equations that both take into account all the components of the spin magnetization and can exploit paral-
lelism, optimized cache utilization, and micro-architecture specific-floating point operations are discussed
in detail in this work. The presented assembly of the exchange correlation potential, suitable for both open
and closed shell systems, uses spinor density and a set of auxiliary variables, ensuring easy retrofitting of
existing density functionals designed for collinear density. The used auxiliary variables in this paper, based
on the scalar and non-collinear density, can preserve non-zero exchange correlation magnetic field local
torque, without violating the required overall zero torque, even for GGA functionals. This is mandatory
to obtain accurate spin dynamics and proper time evolution of the magnetization. Spin frustrated hydro-
gen rings are used to validate the current implementation and phenoxy radicals of different sizes are used
to monitor the performance. This approach is a step towards extending the applicability of relativistic
two-component DFT to systems of large size (>100 atoms).

1 Introduction

Density functional theory (DFT) [1,2] and time-dependent
density functional theory (TDDFT) [3–7] have become the
primary investigative tool for quantum chemical calcula-
tions regarding systems at large, experimentally relevant
scales. The primary reasons for their successes are the
excellent balance of accuracy and computational cost,
and the vast availability through the development of
efficient and reliable DFT software capable of leverag-
ing the latest advances in high–performance comput-
ing [8]. DFT presents an attractive alternative to wave
function based correlation methods which depend on
computationally expensive many-body expansions, such
as multi-configurational self-consistent-field and coupled-
cluster theory [9–11], because it is able to account for
many-body correlation effects through an effective one-
body operator known as the exchange correlation (xc)
potential. Efficient and robust numerical integration tech-
niques for the xc potential have been thoroughly studied
throughout the years [12–18], and their proper applica-
tion is crucial to the practicality and applicability of DFT
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methods. The wide adoption of DFT/TDDFT in the sci-
entific community as a whole has enabled routine, ab initio
characterization of both ground and excited state prop-
erties for large macromolecular systems such as those of
biological [19–21] and materials [22–27] interest and their
transient behavior [28–31].

Recently, there has been a resurgence of interest in the
materials community for the development and design of
materials which exploit properties of electronic spin in
their applications, such as magnetic materials, spintronic
devices, and catalytic active sites [32–35]. As such, there
is a strong need for electronic structure theories that are
capable of treating electronic spins in large scale systems.
Thus, motivated by its success in other aspects of mate-
rials research, there has been a large emphasis in recent
years on the extension of existing DFT/TDDFT methods
to properly include electronic spin and spin interactions.

At its core, a rigorous treatment of electronic spin
and its interaction with materials in quantum systems
must be rooted in relativistic quantum mechanics [36–39].
Although typically thought to be of consequence only in
heavy-elements, the introduction of spin-couplings into
the Hamiltonian has been demonstrated to yield pro-
found effects even in light elements [38], which may be
physically realized in systems such as doped nanodia-
monds which have recently been recognized as fantastic
candidates for the next generation of spintronic devices
and q-bits in quantum computers [24,40–44]. Due to
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this centralized importance in the treatment of electronic
spin, there has been a lot of effort in recent years to
extend existing electronic structure methods to include
relativistic effects, chief among them being extensions
of DFT/TDDFT based methods in both the ground
[45–48] and excited [49–53] electronic states. A rigorous
relativistic description of a quantum system, based on
the Dirac–Coulomb–Hamiltonian [37,39,50,51,54], explic-
itly treats both the electronic and positronic nature of the
electronic wave function through a Dirac bispinor (four-
component) wave functions. Further, in the context of
DFT, relativistic analogues to the Hohenberg–Kohn theo-
rems require the exact energy functional not only to be a
functional of the electronic density, but also of the current
density [37,39,55–62]. While some work has gone into the
development of these types of functionals [63–69], the bulk
of widely used exchange correlation functionals do not
include these effects due to the fact that their contribution
is typically small.

The positronic nature of the electronic wave function,
arising from its relativistic treatment, is of great con-
sequence in the study of chemical systems as it gives
rise to many important phenomena such a spin–orbit
coupling, the inert pair effect, spin-forbidden reactivity
[38,70–73]. However, despite its importance, its explicit
treatment is often not needed for a qualitatively correct
description of its consequences in molecular systems. It is
often advantageous from a practical, as well as aesthetic
perspective, to transform the four-component Dirac–
Coulomb–Hamiltonian to a two-component (spinor) form
which closely resembles non-relativistic electronic struc-
ture theories [74–77]. In essence, two-component relativis-
tic methods aim to fold the positronic component of the
four-component wave function into the electronic compo-
nent to form a pseudo relativistic spinor wave function. As
such, it will be two-component relativistic methods that
will be treated in this work.

One of the central challenges in relativistic DFT is in
that the introduction of spin couplings into the Hamil-
tonian necessarily introduce spin non-collinearity in the
electronic density for open-shell systems, i.e the spin mag-
netization vector is no longer restricted to coincide with
the z-axis [37,39,78]. In this regard, unlike the collinear
theory, non-collinear DFT requires the functional to
depend on charge density and spin magnetization vector.
Unfortunately, density functionals commonly employed in
quantum chemistry have been developed for collinear den-
sities, and therefore, there is no straightforward way to
employ them in non-collinear systems. Several efforts have
been made to adapt common density functionals devel-
oped for collinear densities to the general case to be used
in relativistic calculations, both in the context of rela-
tivistic two-component [46,53,79–84] and four-component
[45,46,85–87] methods. In this context, any non-collinear
DFT generalization needs also to pay particular atten-
tion on preserving the property that the self-consistent
xc magnetic field cannot exert a net torque on the sys-
tem as a whole (zero-torque theorem) [88]. On the other
hand, the local torque does not need to vanish identically
at every point in space, since this local contribution is
required to obtain accurate spin dynamics and a proper

time-evolution of the magnetization [53,82–84,88–90].
However, in stark contrast to its non-relativistic collinear
counterpart, no work has gone into developing highly
optimized numerical integration techniques for these rel-
ativistic DFT methods. Thus, in this work, we outline
an efficient algorithm and practical considerations for the
integration of the xc potential in non-collinear relativistic
DFT.

2 Two-component Kohn–Sham density
functional theory

In this section we provide a brief overview of approxi-
mate relativistic electronic Hamiltonians and their two-
component counterparts in the context of Kohn–Sham
density functional theory. We refer the reader to stan-
dard texts on the subject [37,39] for a more thorough
treatment. Neglecting coupling to external fields and
retardation effects, and within the Born–Oppenheimer
approximation, relativistic many-body quantum mechan-
ics is approximately governed by the Dirac–Coulomb (DC)
Hamiltonian,

ĤDC =

N∑
i

(
ĥD(i) + V̂ (i)

)
+

N∑
i<j

ĝC(i, j), (1)

where the sums over i and j are sums over the N electrons

in the quantum system. Here, ĥD(i) is the single body
free–particle Dirac (D) operator and is given in atomic
units by,

ĥD(i) =

[
0 0
0 −2c2

]
⊗ I2 + c

∑
k

[
0 p̂k(i)

p̂k(i) 0

]
⊗ σk,

(2)

where p̂(i) is the momentum operator for the ith particle,
I2 is the 2-by-2 identity matrix, and {σk} is the set of
Pauli matrices.

I2 =

(
1 0
0 1

)
,

σz =

(
1 0
0 −1

)
, σy =

(
0 −i
i 0

)
, σx =

(
0 1
1 0

)
.

(3)

V̂ (i) is the one-body external potential, which in the
context of this work will be solely described by the
electron–nuclear Coulomb interaction,

V̂ (i) = −

(∑
A

∫
R3

d3R
PA(R)

|R− ri|

)
⊗ I4, (4)

where PA is the nuclear charge density of the A-th nucleus,
and will be taken to be Gaussian in character [91]. ĝC(i, j)
is the two-body Coulomb interaction between electrons,
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given by

ĝC(i, j) =

(
1

|ri − rj |

)
⊗ I4. (5)

From the definitions given by equations (2)–(5), it is

clear that ĤDC acts on a 4-component wave function, Ψ ,
such that

i∂tΨ = ĤDCΨ, Ψ ∈ C4. (6)

For subsequent developments, it will be useful to separate
Ψ into its electronic (ΨL) and positronic (ΨS) components

Ψ =

(
ΨL

ΨS

)
, (7)

and further into their spin components,

ΨX =

(
ΨXα
ΨXβ

)
, X ∈ {L, S}. (8)

From equations (7) and (8) we may define the electronic
density, ρ,

ρ = ΨΨ † =


ρLLαα ρLLαβ ρLSαα ρLSαβ
ρLLβα ρLLββ ρLSβα ρLSββ
ρSLαα ρSLαβ ρSSαα ρSSαβ
ρSLβα ρSLββ ρSSβα ρSSββ

, (9)

where we have separated ρ into its binary components
which are given by

ρXYσσ′ (r) = N

∫
d3r2 · · ·

∫
d3rN

× ΨX∗σ (r, r2, . . . , rN )ΨYσ′(r, r2, . . . , rN ). (10)

Formally, Kohn–Sham density functional theory may be
extended to such a four-component description of the
electronic density in terms of the energy functional [45],

E[ρ] = Ts[ρ] + V [ρ] + J [ρ] + Exc[ρ] + Vnn. (11)

With the exception of Ts, the functionals adopt a similar
form to those of non-relativistic Kohn–Sham,

V [ρ] =

∫
d3r Tr[V̂ (r)ρ(r)], (12)

J [ρ] =

∫
d3r

∫
d3r′ Tr[ĝC(r, r′)ρ(r)ρ(r′)], (13)

Vnn =
∑
A<B

∫
d3R

∫
d3R′

PA(R)PB(R′)

|R−R′|
. (14)

Unlike non-relativistic Kohn–Sham theory, where Ts is
written as the expectation value of the kinetic energy oper-
ator in the non-interacting ground state Slater determi-
nant through the introduction of single-particle orbitals,

in four-component theory, Ts is given by the expectation
value of the free particle Dirac operator,

Ts[ρ] =
∑
i

∫
d3r ψ†i (r)ĥD(i)ψi(r). (15)

Here {ψi ∈ C4} is a set of orbitals which exhibit the same
block form as equations (7) and (8), the single particle
basis for the ground state Slater determinant. The oper-
ative term in equation (11) is the exchange correlation
energy functional, Exc, which accounts for the quantum
many-body effects in Kohn–Sham theory. As the exact
Exc is unknown, the proper choice of its approximation is
paramount in practical Kohn–Sham calculations. In this
work, we will limit our discussion to those functionals
which may be characterized under the hybrid generalized
gradient approximation (hybrid GGA), where Exc takes
the form

Exc[ρ] = EGGAxc [ρ,∇ρ] + cxE
HF
x [ρ]. (16)

Here, the full Exc has been partitioned into a pure GGA
exchange correlation functional, EGGAxc , which is a func-
tional of the electronic density and its gradient, and a
scaled (cx ∈ [0, 1]) Hartree–Fock exchange contribution,
EHFx .

Minimizing equation (11) with respect to {ψi}, we may
formulate the Kohn–Sham eigenproblem,

f̂DKS(r)ψi(r) = εiψi(r), (17)

where {εi} is the set of canonical Kohn–Sham orbital
eigenenergies and,

f̂DKS(r) = ĥD(r) + V̂ (r) + Ĵ(r) + V̂ xc(r), (18)

Ĵ is the effective Coulomb operator,

Ĵ(r) =

∫
d3r′

ρ(r′)

|r− r′|
, (19)

and V̂ xc is the exchange correlation potential,

V̂ xc(r) =
δExc

δρ(r)
. (20)

As functional derivatives are covariant under change of
basis, the structure of V̂ xc in equation (20) formally has
the same block structure as equation (9).

Of interest in this work, two-component relativistic
Hamiltonians are obtained, in general, through a simi-
larity transformation under a unitary operator, Û , which
effectively folds the positronic component of the electronic
wave function into a spinor form which block diagonalizes
equation (17),

f̂DKS(r) 7→ f̂2C(r) = Û†f̂DKS(r)Û

=

[
f̂+(r) 0

0 f̂−(r)

]
, (21)
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ψi(r) 7→ Û†ψi(r) =

[
φi(r)

0

]
. (22)

Thus, equation (17) is reduced to

f̂+(r)φi(r) = εiφi(r), (23)

where {φi} are the effective two-component orbitals which
contain information regarding to both the electronic and
positronic components of the relativistic wave function.
It is useful to note that φi exhibits the same block form
as equation (8) and is formally referred to as a spinor.
Equation (22) implies that the electronic density may now
be written, effectively, in two-component form,

ρ(r) =
∑
i

ψi(r)ψ†i (r) =

ραα(r) ραβ(r) 0 0
ρβα(r) ρββ(r) 0 0

0 0 0 0
0 0 0 0

, (24)

where

ρσσ′(r) =
∑
i

φσi (r)φσ
′†
i (r). (25)

Formally, the expressions given in equations (21) and

(22) are exact given an exact Û . However, such an exact

expression for Û is not possible, in general, for many-
body Hamiltonians [92], thus one must utilize approx-
imate transformations. There exist many approximate
two-component methods in the literature [39,74,75,92–95].
In this work, we will focus on the exact two-component
(X2C) method [47,77,96–99], which is formally exact for a
single electron system. We refer the reader elsewhere for
practical considerations regarding the implementation of
the X2C method [98].

Within the linear combination of atomic orbitals
(LCAO) description of the molecular orbitals in a real
atomic basis {χµ},

φσi (r) =
∑
µ

Cσµiχµ(r). (26)

Equation (23) may be cast into matrix form,

F[P]C = SCε, (27)

where F is the Kohn–Sham Fock matrix depends on P,
the one-particle density matrix. C is the matrix of molec-
ular orbital coefficients, S is the overlap matrix, and ε
is the diagonal matrix of canonical Kohn–Sham orbital
eigenenergies. Due to the spinor structure of {φi}, F and
P formally have the spin-blocked structure

X =

[
Xαα Xαβ

Xβα Xββ

]
, X ∈ {F,P}, (28)

with

Pσσ
′

µν =
∑
i

CσµiC
σ′∗
νi . (29)

We may cast the rank-2 spinor structure of F and P
(Eq. (B.5b)) into a simple form

F = FS ⊗ I2 +
∑
k

Fk ⊗ σk, (30)

P = PS ⊗ I2 +
∑
k

Pk ⊗ σk, (31)

where

FS = hS + J[PS ] + Vxc,S , (32)

Fk = hk + Vxc,k. (33)

J is the Coulomb matrix,

J [PS ]µν =
∑
λκ

(µν|λκ)PSλκ, (34)

where

(µν|λκ) =

∫
d3r

∫
d3r′

χµ(r)χν(r)χλ(r′)χκ(r′)

|r− r′|
, (35)

{hS ,hz,hy,hx} are the components of the two-component
relativistic core Hamiltonian transformed in the same
manner as the spinor Fock matrix (Eq. (B.5b)).
{Vxc,S ,Vxc,z,Vxc,y,Vxc,x} are the components of the
exchange correlation potential, where, given the functional
form of equation (16), takes the form

Vxc,I = VGGA,I − cxK[PI ] I ∈ {S, x, y, z}, (36)

where K is the exchange matrix of Hartree–Fock theory,

K[PI ]µν =
∑
λκ

(µλ|νκ)P Iλκ, (37)

and

V GGA,Iµν =
δEGGAxc

δP Iµν
. (38)

Efficient algorithms for the evaluation of the J and K
matrices are well understood and outside of the scope
of this work. In the subsequent section, we will pro-
vide a detailed description of the practical evaluation of
equation (38), for which the effective change of basis out-
lined in equations (30) and (31) will serve as a primary
basis.

2.1 Assembly of VGGA for spinor densities

In this section, we examine the integration and assembly
of the EGGAxc dependent terms of the Kohn–Sham Fock
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matrix using a spinor density. In general, the exchange
correlation contribution to the electronic energy may be
written as an integral over an exchange correlation (xc)
integration kernel, f ,

EGGAxc [ρ,∇ρ] =

∫
d3r f({U(r)}), (39)

where we have introduced a set of auxiliary “U”-variables,
{U(r)}, upon which the xc kernel depends. These need
not be the density variables (ρ,∇ρ) directly, which we
will refer to as “V ”-variables, {V (r)}, but rather have
complete flexibility in functional form. In non-relativistic,
spin-polarized density functional theory, these sets of
variables may be defined as

{V col(r)} = {ρα(r), ρβ(r),∇ρα(r),∇ρβ(r)}, (40)

and

{U col(r)} = {ρα(r), ρβ(r), γαα(r), γαβ(r), γββ(r)}, (41)

where

γσσ
′
(r) = ∇ρσ(r) · ∇ρσ

′
(r). (42)

The practical utility for the use of these two separate sets
of variables is especially apparent in the context of two-
component density functional theory as it allows for a
simple retrofitting of standard xc functionals for relativis-
tic calculations by simply redefining the transformations
from the V variables of relativistic theory.

In the following, we will make use of the transfor-
mation of the spin blocked density of equation (24) to
the variables {ρS , ρz, ρy, ρx} via equation (B.5b). Defining
the magnetization density as m(r) = {ρz(r), ρy(r), ρx(r)},
non-collinear analogues for equations (40) and (41) may
be defined as

{V NC(r)} = {ρS(r),m(r),∇ρS ,∇m(r)}, (43)

{UNC(r)} = {n+(r), n−(r), γ++(r), γ+−(r),

γ−−(r)}, (44)

where we have used NC to denote non-collinearity. The
connection between {U col} and {UNC} is clear by making
the substitution α ↔ + and β ↔ −. {V col} and {V NC}
may be related by recognizing {ρα, ρβ} as the diagonal
contributions of the spinor density, and thus

{ρα(r), ρβ(r)} 7→ {ρS(r),mcol(r)}, (45)

where mcol(r) = {ρz(r), 0, 0}. Given the components
of the spinor density matrix, spatial evaluation of the
V -variables is given by

ρI(r) =
∑
µν

Re[P Iµν ]χµ(r)χν(r), (46)

∇ρI(r) = 2
∑
µν

Re[P Iµν ]χµ(r)∇χν(r), (47)

where Re[x] denotes the real part of x. Remark that the
evaluation of {V (r)} may then be practically evaluated
using strictly real arithmetic.

Given a transformation, {V NC(r)} 7→ {UNCI (r)}, it is
possible to perform practical density functional calcu-
lations using standard implementations of collinear xc
functionals, such as those provided by libxc [100,101].
However, defining such a transformation is not a trivial
task, as the added spin degrees of freedom in the non-
collinear spinor density and Fock matrix must obey to
stricter conditions than their collinear counterparts, such
as orientation invariance and adhering to the zero-torque
theorem for the xc potential [88]. Several definitions
of the generalized density variables have been proposed
[79,82–84,102]. In this work, we utilize the transformation
method which meets such conditions from reference [53]

n±(r) =
1

2
ρS(r)± 1

2
|m(r)|, (48a)

γ±±(r) =
1

4
∇ρS(r) · ∇ρS(r)

+
1

4

∑
k

∇ρk(r) · ∇ρk(r)

±f∇(r)

2

√∑
k

DSk(r)2, (48b)

γ+−(r) =
1

4
∇ρS(r) · ∇ρS(r)

−1

4

∑
k

∇ρk(r) · ∇ρk(r), (48c)

where

f∇(r) = sgn

(
∇ρS(r) ·

(∑
k

∇ρk(r) · ρk(r)

))
, (49)

DIJ(r) = ∇ρI(r) · ∇ρJ(r). (50)

Using this set of transformations, we may define an
electronic energy and Fock matrix which has no depen-
dence on the global orientation of m(r) and which sat-
isfies the zero torque theorem (see Appendices A and
B) for the exchange correlation potential also in the
GGA framework. Instead of treating all components of
spin-magnetization vector on equal footing, Vignale and
coworkers introduced a formalism that weighs transverse
and longitudinal spin-magnetization components differ-
ently [103]. The formalism used here has been shown to
be satisfactory for systems with either weak or signifi-
cantly inhomogeneous spin polarization [83,84,103] and
for non-collinear TDDFT calculations [53].

In the limit of small m(r) (|m(r)| < 10−12, in this
work), the transformations outlined in equation (48) yield
numerically unstable expressions for the exchange cor-
relation potential [53]. Thus one must define another
set of transformations for practical implementations of
non-collinear DFT to ensure proper convergence in the
limit of small m(r). In summary, this change for small
m(r) may be described by the following substitutions in
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equation (48),

|m(r)| 7→ ms(r) =
1

3

∑
k

ρk(r), (51a)√∑
k

(DSk(r))
2 7→ ∇ρS(r) · ∇ms(r). (51b)

Using these mappings ensures no orientation dependence
of m while maintaining numerical stability in the result-
ing expression for the xc potential. While equation (51)
formally violates the zero torque theorem, its influence
on the over all nature of the electronic density has been
shown to be negligible [53].

Differentiating equation (39) with respect to the ele-
ments of the density matrix, we obtain for equation (38)

V GGA,Iµν =
∑
ΓΓ ′

∫
d3r

∂f

∂UΓ (r)

∂UΓ (r)

∂V Γ ′(r)

∂V Γ
′
(r)

∂P Iµν

=

∫
d3rV GGA,Iµν (r), (52)

where the partial derivatives of f are the same as in
collinear DFT, and the partial derivatives of {V (r)} may
be identified through differentiating equation (46) for a
particular spin component. We refer the reader to the
Appendix of reference [53] for explicit expressions for the
partial derivatives of {U(r)}.

In practice, equations (39) and (52) are evaluated
numerically using a molecular quadrature scheme [12–18],

ExcGGA [ρ,∇ρ] ≈
∑
i

w(ri)f({U(ri)}), (53)

V GGA,Iµν ≈
∑
i

w(ri)V
GGA,I
µν (ri), (54)

where {w(ri)} is a set of quadrature weights. In this work,
we utilize the Becke multi-center numerical integration
scheme [12], where the integral is evaluated on series of
overlapping atomic centered grids, transformed, through
their weights, into “fuzzy”, overlapping, and analytically
continuous cells instead. We also refer the reader to a more
thorough discussion regarding specific details [12,16]. The
evaluation of equation (53) is straight forward as it is a
scalar function. In the spirit of the intermediates used in
reference [18], by substituting the definitions of the par-
tial derivatives of the U and V variables, we arrive at a
concise expressions for assembly of equation (54)

V GGA,Iµν =
∑
i

ZIµ(ri)χν(ri) + ZIν (ri)χµ(ri), (55)

ZIµ(r) = w(r)

1

2
ZIρ (r)χµ(r) +

∑
ξ

ZI∇,ξ(r)∇ξχµ(r)

,
(56)

where ξ ∈ {x, y, z} and

ZIρ =
∂f

∂ρI
(57a)

ZI∇,ξ =
∂f

∂∇ξρI
(57b)

ZIρ =
1

2


(
∂f

∂n+
+

∂f

∂n−

)
I = S(

∂f

∂n+
− ∂f

∂n−

)
KI I 6= S,

(58a)

ZI∇,ξ =
1

2



∇ξρS
(

∂f

∂γ++
+

∂f

∂γ+−
+

∂f

∂γ−−

)
+
∑
k∇ξρkHk

(
∂f

∂γ++
− ∂f

∂γ−−

)
I = S

∇ξρSHI

(
∂f

∂γ++
− ∂f

∂γ−−

)
+∇ξρI

(
∂f

∂γ++
− ∂f

∂γ+−
+

∂f

∂γ−−

)
I 6= S,

(58b)

where we have dropped the explicit dependence on r
for brevity. To consolidate the transformation rules of
equations (48) and (51), we now define

KI =



ρI

|m|
(Significant m)

1

3
(Small m),

(59a)

HI =



f∇D
SI√∑

k (DSk)
2

(Significant m)

f∇
3

(Small m).

(59b)

3 Implementation

On modern computing architectures, there are three
primary facets one must consider when developing high–
performance scientific software: parallelism, cache utiliza-
tion, and exploitation of micro-architecture specific float-
ing point operations (µ-ops) such as single instruction–
multiple data (SIMD) and fused multiply–add (FMA)
operations. We refer the reader to the work of Goto
and Geijn [104] for an excellent discussion of these con-
siderations in the context of matrix operations. In the
context of density functional theory, maximal exploita-
tion of computational cache and µ-ops is achieved through
batching groups of integration points together to maxi-
mize screening capability and memory contingency. There
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Fig. 1. Pictorial representation of the screening and updating scheme for each batch. A list of significant basis functions in the
batch (colored patterns in the figure), is selected and than used for integration. The collection of sub-matrices for the entire
batch is integrated by symmetric rank-2k update routine (SYR2K) and inserted in the final result. See text for a more detailed
discussion.

exist many batching schemes for various molecular inte-
gration quadratures in the literature [12–18]. We provide
the following discussion without loss of generality.

As the point-wise function evaluations required for
numerical integration are completely independent, it con-
stitutes what is called an embarrassingly parallel task,
i.e. no communication is required between the indepen-
dent operations and thus one should expect near linear
speedup with the number of processors used. In the con-
text of electronic structure theory, the final two facets
can usually be addressed through the use of highly opti-
mized linear algebra software, such as the optimized
BLAS (basic linear algebra subroutines) implementations
offered OpenBLAS [105,106] BLIS [107] and Intel–MKL
[108]. However, blind application of such software without
careful consideration will often yield sub-optimal results,
thus it is often the case that one must perform some
level of algorithmic rearrangement to maximally utilize
such capability. To demonstrate this point, we exam-
ine the assembly of the exchange correlation potential
in equation (55). One may immediately recognize that
the operation on the left of equation (55) is a sum over
symmetric rank-2 updates (SYR2) of column vectors,
z and χ, i.e.

VGGA,I =
∑
i

zIiχ
T
i + χi

(
zIi
)T
, (60)

where zIi and χi are of length of the number of basis func-
tions, Nb. While equation (60) is a valid scheme for the
assembly of equation (55), for large Nb this scheme will be
drastically sub-optimal. This is due to the fact that, for
large Nb, V

GGA,I , zIi and χi occupy a significant portion
of the computational caches for each point. This means
that the probability of the program attempting to access a
memory address, i.e. an element of zIi or χi, between inte-
gration points and finding that it does not currently reside
in the cache, i.e. a “cache miss”, is rather high relative to
other memory access patterns. This yields a large degra-
dation in performance as whenever a cache miss occurs,
the program must then move that address in some man-
ner to the cache from main memory before it can perform
any operations on it. Moving data to and from main mem-
ory is disproportional more expensive than floating point
operations, thus it must be kept to a minimum to obtain
optimal efficiency.

We may instead factor out a portion of the sum in equa-
tion (60) such that we may partition it into sum over batch
of points (Sj). In detail, we use the macrobatch approach
[16], where the grid points of each atoms are arranged in
Lebedev spheres [109] of several radii, for the numerical
integration of the exchange correlation potential,

VGGA,I =
∑
Sj∈S

∑
i∈Sj

zIiχ
T
i + χi

(
zIi
)T

=
∑
Sj∈S

ZI(j)
(
X(j)

)T
+ X(j)

(
ZI(j)

)T
, (61)

where

Y(j) =
[
y1 y2 · · · yi · · · y|Sj |

]
∀i ∈ Sj , (62)

and y is either z or χ. Equation (61) is a sum over sym-
metric rank-2k updates (SYR2K), where k = |Sj |. By
tuning k, one improves caching behavior dramatically.
This is due to the fact that optimized implementations
of SYR2K operations utilized efficient block operations to
optimize the flow of data to and from the computational
caches. Similar schemes may developed for the evaluation
of the V variables (Eq. (46)) over batches using optimized
matrix–matrix multiplication routines. However, while the
caching behavior is improved with increasing k, this is not
the only consideration one needs take into account when
partitioning the integration grid into batches.

The scheme in equation (61) may be further improved
by recognizing the fact that the basis functions typically
used for molecular calculations carry a degree of spatial
locality. A pictorial representation of the screening and
updating scheme is given in Figure 1. For each batch, we
create a list of basis functions that effectively overlaps it
(colored subset of basis functions in Fig. 1). This list of
significant basis functions will be different for each batch,
but the number of basis functions in each list becomes
independent of size for sufficiently large molecules, given
the spatial localization nature of Gaussian atomic cen-
tered basis sets. This reduced list of basis, evaluated for all
points in the batch, is stored in contiguous blocks of mem-
ory, and used (along with the corresponding submatrices
of the density-matrix, when required) for the evaluation
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of the potential, Z (see Eq. (56)), by exploiting a sub-
sequential series of vectorized operations. An important
note here is that the maximum values for the batch of
basis functions, χmax(batch), and potential, Zmax(batch),
can be used to screen the entire contribution of the points
in the batch to the integration. In this case, the integration
can move to the next batch, avoiding the rank-2k update,
that is the computationally most expensive part of the
process, without loosing accuracy. Otherwise, recognizing
that Z and X exhibit the same sparsity pattern, we may
define

ṼGGA,I
(j) = Z̃I(j)

(
X̃(j)

)T
+ X̃(j)

(
Z̃I(j)

)T
, (63)

where moieties denoted with a tilde are the packed quanti-
ties where only the basis functions which have been chosen
to be evaluated for the batch are represented. The packed

ṼGGA,I
(j) may then be used to update the full VGGA,I by

mapping its elements to those in the full basis dimension.

4 Discussion

4.1 Validation

Molecular systems characterized by geometrically frus-
trated conformations have been used to gauge the relia-
bility of the presented implementation, since generalized-
KS and X2C-KS, unlike U-KS, methods are capable to
support the broken Ŝz symmetry that minimizes Pauli
repulsion [82–84,90,110–114]. Thus, we examined a series
of neutral hydrogen rings, ranging from 3 to 8 hydrogen
atoms, that have already been proved to show broken sym-
metry solutions within generalized Hartree–Fock theory
[114]. The used conformations have 1 Å spaced hydrogen
atoms and only the odd-membered rings will be geomet-
rically frustrated. All hydrogen rings electronic structure
were obtained by solving the presented X2C-KS equation
in open-source ChronusQ [115] electronic structure soft-
ware using the hybrid Becke, 3-parameter, Lee-Yang-Parr
(B3LYP) density functional [116–118] with a 6-311+g**
basis, since it is required to include the polarization of
hydrogenic s-functions [114]. Qualitatively, X2C-KS solu-
tions are given in Figure 2, where both the spin and the
charge densities are reported, respectively. The spin den-
sity in the non-collinear approach is a mapping of the
2-norm of the spin magnetization vector onto the total
density [79], ensuring the spin density to be positive and
always real, and the charge density is a mapping of the
electrostatic potential to the total density. For even num-
bered rings, the anti-ferromagnetic spin distribution can
be observed, aside from the six rings (where the closed
shell solution is the most stable one according to the 2n+1
rule for Möbius-like periodicity). For odd membered rings,
the Möbius-like periodicity of magnetization ordering in
X2C-KS results can be inspected by the totally symmetric
distribution of the spin density throughout the structure
in Figure 2. This symmetric distribution can not be sup-
ported by collinear solutions [114] which are constrained

to be eigenfunctions of Ŝz. Thus, X2C-B3LYP is able to

Fig. 2. X2C-B3LYP 6-311+g** spin and charge densities for
hydrogen rings sizes 3–8. The spin density is represented as
the 2-norm of the magnetization vector at each point in space
(left, in blue largest magnitude), and the charge density as the
electrostatic potential mapped to the total density (right, in
red largest electronic population).

Fig. 3. X2C-SVWN5 Sapporo-DKH3-DZP-2012, including
diffuse-sp, computed optical absorption spectrum for Cd atom.
An inset presenting the zoomed in region between 3.9 eV and
5.6 eV is reported in the upper right corner. A larger inte-
gration DFT grid was used (252 × 974 grid) to ensure better
accuracy.

reproduce the expected symmetry of non-collinear results
for odd membered rings [114], ensuring the reliability of
the current implementation.

A second test was conducted to further validate the
correct implementation of the X2C-DFT framework.
The valence excitations of a group 12 transition metal
atom, Cd, were computed via real-time X2C-TDDFT.
[28,119–123]. The procedure presented in reference [28]
was employed to propagate the X2C-TDDFT equations
in time containing the external electric field perturba-
tion. In brief, calculations were performed using the
SVWN5 [124,125] density functional with the Sapporo-
DKH3-DZP-2012 Gaussian basis set including diffuse-sp
functions [126]. After converging the ground state density,
the system was perturbed with an electric dipole delta
pulse corresponding to κ = 0.0001 au along each unique
Cartesian axis. Each real-time dynamics was propagated
using a time step of 0.0012 fs for 50 fs. Energy was
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Fig. 4. X2C-B3LYP 6-311+G(2d,p) spin densities for phenoxy radicals with increasing number of symmetrical fused benzene
rings (n = 1–10, where n represents the number of fused benzene rings on each side). The spin density (here the 0.001 iso-surface)
is obtained as the 2-norm of the magnetization vector at each point in space.

conserved to at least 10−8 au. The optical absorption
spectrum was obtained by plotting the isotropic dipole
strength function, S(ω), proportional to the imaginary
component of the trace of the frequency dependent polar-
izability, via the Fourier transform of the time-dependent
electric dipole moment (µ(ω)) parallel to the polarization
of the electric field perturbation according the following

S(ω) ∝
∑

α=x,y,z

Tr

[
ω · Imµα(ω)

κα

]
. (64)

To accelerate convergence of the Fourier transform, a Padé
transformation scheme was utilized [127]. The electric
dipole response was exponentially damped so as to give
each peak a Lorentzian line shape with full-width half-
max of 0.01 eV. The spectrum is reported in Figure 3. The
spin-forbidden singlet, 1S0, to triplet, 3P1 states, (∼4.06
eV) and spin-allowed singlet, 1S0, to singlet, 1P1, (∼5.53
eV) transitions can be easily assigned based on the relative
intensities in Figure 3 (see inset). Real-time X2C-TDDFT
method can only detect electronically allowed transitions,
thus singlet to triplet transitions (appearing at ∼4.06
eV) can be only observed since the X2C Hamiltonian
includes spin-orbit couplings which allow the otherwise
spin-forbidden transitions to become weakly allowed. The
presented results are also in nice agreement with previ-
ously computed values including relativistic effects, fur-
ther ensuring the accuracy of the current implementation
[28,51,128–132].

4.2 Performances

After we have checked the reliability and presented the
schematics of the integration scheme, we focus on the
performances of the method. All the following tests pre-
sented are performed without exploiting symmetry using
B3LYP/6–311+G(2d,p) theory level and atomic centered
grids resulting as the product of a radial and angu-
lar quadrature, using 100 Euler–Maclaurin [14], and 302
Lebedev (l = 29) [109] grid points, respectively (100 × 302
grid). All calculations were performed using Intel Haswell
compute nodes (14×2 Intel R©Xeon E5–2680 v4 CPUs @
2.40 GHz, 32k L1 cache, 256k L2 cache, 35840k L3 cache).
All times refer to the combined wall time for the numeri-
cal evaluation of EXC and the matrix elements V GGA,Iµν ,

Fig. 5. Wall timings in seconds as a function of the total num-
ber of atoms in the systems for the evaluation of the EXC and
the matrix elements Xµν in one SCF step (as average over 5
steps, 6–311+G(2d,p), 100 × 302 grid. Both the U-KS, empty
diamonds, and X2C-KS, filled circles, are reported for compar-
ison. A linear fit in this log-log scale is performed to show the
similar scaling for the two different integration. The two lines
show an identical slope and the X2C-KS is only ∼40% more
expensive compared to the UKS.

(Eqs. (53) and (54)) for each self consistent field (SCF)
step (as average over 5 steps). The scaling of the numer-
ical integration with respect to increasing system sizes is
investigated first by measuring wall timings on a series of
phenoxy radicals with increasing number of symmetrical
fused benzene rings (n = 1–10). These systems have been
chosen, since they present a delocalized spin-density over
the entire molecule (see Fig. 4) for all values of n. This
is very important, since the screening based on the differ-
ent components of the density can be very large in regions
showing zero magnetization density. Wall times are shown
in Figure 5 as function of the total number of atoms in
the systems for both the U-KS and X2C-KS implementa-
tions. The scaling factors are similar for both U-KS and
X2C-KS integration (see the parallel fitted lines in the
figure), showing how the X2C-KS integration does not
show any consistent computational overhead in the
V GGA,Iµν integration with respect to the common U-KS
integration. Finally, by employing the largest phenoxy
radical of the series (n = 10), the same wall times are
recorded as function of increasing MPI processes across
different computational nodes (for 1, 2, 4, 8, 12 nodes,
for a total of 28, 56, 112, 224, 336 CPUs) and reported
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Fig. 6. Wall timings in seconds as function of increasing com-
putational CPUs of the EXC and the matrix elements Xµν

for each SCF step (as average over 5 steps, 6–311+G(2d,p),
100 × 302 grid, 2619 basis functions). A linear fit, –1.01 slope,
is also represented as full line.

in Figure 6. The implemented algorithm presents lin-
ear (−1.01) with increasing number of CPUs, as can be
expected since the integration over different atomic cen-
ters can be easily independently performed across different
computing nodes.

5 Conclusions

In this work, we presented an integration and assembly
strategy, using a two-component spinor density, for effi-
cient evaluation of the exchange correlation term using
localized basis functions. The presented formulation is
suitable to exploit parallelism along with optimal cache
utilization and micro-architecture specific floating point
operations. This leads to the evaluation of exchange cor-
relation contributions with matrices of optimal sizes. We
also show that the proper choice of auxiliary variables
correctly give rise to nonzero local torque of the xc
magnetic field on the magnetization while maintaining
net zero global torque, as is expected from the exact
functional. Several tests were used to validate the reli-
ability and the performance of the proposed strategy.
This approach can help to extend the applicability of
relativistic two-component DFT to systems of large size
(>100 atoms).
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Appendix A: Proof of zero torque theorem
using generalized density variables

In this Appendix, we validate that the zero torque theo-
rem for the xc magnetic field is satisfied in the generalized
gradient approximation given the transformation rules of
equation (48). The local torque does not need to van-
ish identically at every point in space and this local
contribution is required to obtain accurate spin dynam-
ics and a proper time-evolution of the magnetization
[53,82–84,88,89]. The local torque of the xc magnetic field
is the tensor field defined by [88]

Ti(r) =
∑
jk

εijkρ
j(r)BkGGA(r), (A.1)

where εijk is the rank-3 Levi–Civita tensor and the xc
magnetic field is given by

BkGGA(r) =
δEGGA[ρ,∇ρ]

δρk(r)
. (A.2)

From equation (A.1), we may define the global torque of
the xc magnetic field as

T global
i =

∫
d3r Ti(r). (A.3)

Remark that the set of U variables in equation (48) is
partitioned by those variables which depend on m(r)
and those which depend on ∇m(r). Recognizing that our
choice of U variables are local functions and applying
the Euler–Lagrange formula for functional derivatives to
equation (A.2), we obtain

BkGGA(r) =
∂f

∂ρk(r)
−∇ · ∂f

∂∇ρk(r)

= B
(ρ),k
GGA(r)−B(∇),k

GGA (r), (A.4)

where

B
(ρ),k
GGA(r) =

∂f

∂n+(r)

∂n+(r)

∂ρk(r)
+

∂f

∂n−(r)

∂n−(r)

∂ρk(r)
, (A.5)

B
(∇),k
GGA (r) = ∇ ·

(
∂f

∂γ++(r)

∂γ++(r)

∂∇ρk(r)
+

∂f

∂γ+−(r)

∂γ+−(r)

∂∇ρk(r)

+
∂f

∂γ−−(r)

∂γ−−(r)

∂∇ρk(r)

)
. (A.6)

We refer the reader to the Appendix of reference [53] for
explicit expressions for the partial derivatives of {UNC(r)}
given by equation (43). Thus, the local and global torque
expressions may also be similarly as they are linear in
BGGA(r),

Ti(r) = T ρ
i (r) + T ∇i (r), (A.7)

T ρ
i (r) =

∑
jk

rεijkρ
j(r)B

(ρ),k
GGA(r), (A.8)
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T
(ρ),global
i =

∫
d3r T ρ

i (r), (A.9)

T ∇i (r) =
∑
jk

εijkρ
j(r)B

(∇),k
GGA (r), (A.10)

T
(∇),global
i =

∫
d3r T ∇i (r). (A.11)

To identify the local and global torque contributions
from equation (A.5), we may consolidate it with the
magnetization components of equation (57),

B
(ρ),k
GGA(r) = Zkρ (r) =

1

2

(
∂f

∂n+(r)
− ∂f

∂n−(r)

)
ρk(r)

|m(r)|
.

(A.12)
Substituting into equation (A.8), we obtain,

T ρ
i (r) =

1

2

(
∂f

∂n+(r)
− ∂f

∂n−(r)

)∑
jk

εijkρ
j(r)ρk(r)

|m(r)|

= 0, =⇒ T
(ρ),global
i = 0, (A.13)

where we have utilized the fact that
∑

jk εijkρ
j(r)ρk(r) =

0. Thus the local torque contribution of this term is zero
in all space, implying that its global torque contribution
is zero as well.

Similarly, we may identify equation (A.6) with the
magnetization components of equation (58),

B
(ρ),k
GGA(r) =

∑
ξ

∇ξZk∇,ξ(r). (A.14)

However, unlike equation (A.13), the torque arising from
equation (A.14) is not zero in all space. We must them
examine its global torque contribution,

T
(∇),global
i =

∑
jk

∑
ξ

εijk

∫
d3r ρj(r) ∇ξZk∇,ξ(r)

= −
∑
jk

∑
ξ

εijk

∫
d3r Zk∇,ξ(r)

(
∇ξρj(r)

)
.

(A.15)

Here, we have integrated the first line by parts and
utilized the fact that the density and its derivatives dis-
appear at the boundary by definition. Substituting in the
expressions from equation (58),

T
(∇),global
i = −1

2

∑
jk

∑
ξ

εijk

∫
d3r ∇ξρj(r)

×
(
∇ξρS(r)Hk(r)

(
∂f

∂γ++(r)
− ∂f

∂γ−−(r)

)
+ ∇ξρk(r)

(
∂f

∂γ++(r)
− ∂f

∂γ+−(r)

+
∂f

∂γ−−(r)

))
= 0, (A.16)

where we have used the following relations

∇ρS(r) · ∇ρj(r)Hk(r) = ∇ρS(r) · ∇ρk(r)Hj(r)

=⇒
∑
jk

εijk∇ρS(r) · ∇ρj(r)Hk(r) = 0, (A.17)

∑
jk

εijk∇ρj(r) · ∇ρk(r) = 0. (A.18)

Appendix B: Spin-Algebra over rank-2
spinors

In this section, we review the necessary spin-algebra to
supplement the development of non-collinear electronic
structure methods. Let X(2) be a rank-2 spinor, such that

X(2) =

[
X(2)αα X(2)αβ

X(2)βα X(2)ββ

]
, (B.1)

where
{
X(2)σσ

′ ∈ GL(C, N) | σ, σ′ ∈ {α, β}
}

is a set of

N -by-N complex matrices. Thus X(2) ∈ GL(C, N) ×
GL(C, 2). Choosing the standard basis of GL(C, 2) as
U2 × U2, we may recast equation (B.1) as

X(2) =
∑
σσ′

X(2)σσ
′
⊗ eσ ⊗ eσ′ eα =

[
1
0

]
, eβ =

[
0
1

]
,

(B.2)

and such is the standard treatment of spin non-collinearity
in the literature, exemplified by treating the binary spin
blocks of X(2) explicitly.

In this work, we rely on a change of basis to simplify the
subsequent derivations and arithmetic in the development
of non-collinear electronic structure. We choose the basis
of the Pauli matricies (Eq. (3)), for which it may be shown
that

span [{I2,σz,σy,σx}] = GL(C, 2), (B.3)

i.e. {I2} ∪ {σk | k ∈ {x, y, z}} forms a basis of GL(C, 2).
Because the Pauli matricies form a basis for GL(C, 2),
there must exist {X(2)S ,X(2)z,X(2)y,X(2)x} such that

X(2) = X(2)S ⊗ I2 +
∑

k∈{x,y,z}

X(2)k ⊗ σk. (B.4)

From the definitions in equation (3), we may define linear
transformations (T and T −1) between the two bases and
their components (the other being that of Eq. (B.2)),I2σzσy

σx

 = T

eα ⊗ eα
eα ⊗ eβ
eβ ⊗ eα
eβ ⊗ eβ

 T =

1 0 0 1
1 0 0 −1
0 −i i 0
0 1 1 0

,
(B.5a)
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X(2)S

X(2)z

X(2)y

X(2)x

 = T −T


X(2)αα

X(2)αβ

X(2)βα

X(2)ββ

 T −1 =
1

2
T †. (B.5b)

By resolving the identity with T in equation (B.2), we
arrive at equation (B.4).

As a consequence of equations (B.4), (B.5a), (B.5b),
and number of properties are immediately evident. Firstly,
suppose there is another rank-2 spinor Y(2) described as
in equation (B.4), the product of X(2) and Y(2) takes on
a component form

XY(2) =

X(2)SY(2)S +
∑

k∈{x,y,z}

X(2)IY(2)I

⊗ I2
+

∑
k∈{x,y,z}

X(2)SY(2)k + X(2)kY(2)S

+
∑

j,l∈{x,y,z}

iεkjlX(2)jY(2)l

⊗ σk. (B.6)

This form is convenient for a number of reasons, how-
ever in the context of electronic structure, equation (B.6)
exhibits particular utility in the context of operator traces,
i.e. property evaluation. Using the product ansatz of
equation (B.6), we may write the trace of X(2) and Y(2)
(denoted Tr[X(2)Y(2)]) simply as

Tr[X(2)Y(2)] = 2

Tr
[
X(2)SY(2)S

]

+
∑

k∈{x,y,z}

Tr
[
X(2)kY(2)k

]. (B.7)

This simplicity of this expression is due to the fact that
the trace operation over the Kronecker product is given
by

Tr[A⊗B] = Tr[A]Tr[B], (B.8)

and that the Pauli matricies are traceless with the excep-
tion of I2 which has a trace of 2.

Further, in the context of electronic structure theory,
describing the Fock operator and electronic density as in
equation (B.4) allows for a systematic treatment of all
spin-restrictions (i.e. restricted, unrestricted and general)
of single body electronic structure methods through a sim-
ple restriction of the populated Pauli matrix components,
i.e.

F(2) ∼


F(2)s,F(2)z,F(2)y,F(2)x GHF/GKS

F(2)s,F(2)z UHF/UKS

F(2)s RHF/RKS

,

(B.9)

and similarly for the electronic density, etc. From a practi-
cal perspective, electronic structure software which bases
their methods on the spinor structure of equation (B.4)
can generalize their code to work with any spin-restriction
with only minor, systematic modifications.
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