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ABSTRACT: The time-dependent Hartree−Fock (TDHF) and time-
dependent density functional theory (TDDFT) equations allow one to
probe electronic resonances of a system quickly and inexpensively.
However, the iterative solution of the eigenvalue problem can be
challenging or impossible to converge, using standard methods such as
the Davidson algorithm for spectrally dense regions in the interior of the
spectrum, as are common in X-ray absorption spectroscopy (XAS). More
robust solvers, such as the generalized preconditioned locally harmonic
residual (GPLHR) method, can alleviate this problem, but at the expense of
higher average computational cost. A hybrid method is proposed which
adapts to the problem in order to maximize computational performance
while providing the superior convergence of GPLHR. In addition, a
modification to the GPLHR algorithm is proposed to adaptively choose the
shift parameter to enforce a convergence of states above a predefined
energy threshold.

1. INTRODUCTION

The computation of electronic excited states plays a very
important role in understanding the response of molecular and
material systems to external electromagnetic perturbations.
Linear-response time-dependent density functional theory (LR-
TDDFT)1−3 is one of the most popular methods for this
purpose, because of its excellent balance between accuracy and
computational cost. Although LR-TDDFT is among the most
tractable methods for excited-state calculations, it still leverages
a large computational demand for large molecular systems, such
as those of photochemical interest. The computational cost of
solving the TDDFT equations using iterative techniques, such
as the Davidson algorithm,4−6 formally scales as MN( )4 ,
where N is the total number of basis functions and M is the
number of excited states sought. With the development of
efficient linear-scaling methods for direct formation of Fock/
Kohn−Sham-like operators, the scaling of conventional
implementations of LR-TDDFT may be reduced to

−MN MN( ) ( )2 3 in complexity.7 While efficient imple-
mentations of LR-TDDFT8−10 are routinely used to to obtain
characteristics of lowest-lying molecular excited states, mod-
ifications to the Davidson algorithm such as energy-specific
windowing11−13 or restricted excitation windowing14−16 have
also been used to resolve the spectral interior of the LR-
TDDFT equation, which is crucial to modeling K-edge X-ray
absorption spectroscopy (XAS).

However, for systems that exhibit a dense manifold of excited
states in the spectral region of interest, e.g., carbon K-edge XAS
of a nanographene or a nanodiamond, solving the LR-TDDFT
equations by iterative diagonalization is still very expensive and
subject to nontrivial convergence problems. While alternatives
to diagonalization have also been explored, including frequency
dependent-response17−24 and model order reduction,25,26 the
eigenvector approach provides easy interpretation in the
context of electronic adiabats.27 Recently, more robust methods
have been proposed for non-Hermitian eigenvalue problems
such as the generalized preconditioned locally harmonic
residual (GPLHR) algorithm.28 This solver can reliably
converge the closest N roots to a specified spectral shift for
arbitrary complex matrices. Its use in chemistry has proven to
be effective for EOM-CCSD calculations, although an increased
average computational cost over the Davidson algorithm is
traded for improved convergence characteristics.29

In this work, we introduce a modified energy-specific
GPLHR method and a well-tempered hybrid method of
Davidson and GPLHR methods for solving challenging
TDDFT systems. This method takes advantage of the benefits
of different iterative diagonalizers, using a hybrid scheme
incorporating an adaptive switching between both energy-
specific Davidson and GPLHR. We report the results on a
variety of test systems in the very challenging high-energy X-ray
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region with dense manifolds of excited states. In addition to
providing additional robustness of convergence for systems for
which the Davidson algorithm fails, we find that there are
systems where a hybrid approach is able to computationally
beat the use of either method alone.

2. THEORY
Because the formalism of the linear response TDHF/TDDFT
is a well-established method, we only present a brief review
herein. For a detailed discussion, we refer the interested reader
to ref 10. The linear response of a molecular system subject to
perturbation by an external electromagnetic field is given by the
TDHF or TDDFT equations

* *
=

−
⎜ ⎟ ⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝

⎞
⎠

⎛
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⎞
⎠⎟
⎛
⎝

⎞
⎠E

A B

B A
X
Y

X
Y

1 0
0 1 (1)

where the matrices A and B for TDHF are defined as

δ δ= ϵ − ϵ + | − |A ia jb ib ja( ) ( ) ( )ai bj ab ij a i, (2)

= | − |B ia bj ij ba( ) ( )ai bj, (3)

and for TDDFT as

δ δ α= ϵ − ϵ + | − | + | |A ia jb ib ja ia f jb( ) ( ) ( ) ( )ai bj ab ij a i xc,

(4)

α= | − | + | |B ia bj ij ba ia f bj( ) ( ) ( )ai bj xc, (5)

The two electron integrals have been expressed in the
canonical molecular orbital (MO) basis in Mulliken notation
where i and j indices are used for occupied MOs and a and b
indices for virtual MOs, ϵp is the orbital energy of the Kohn−
Sham operator for MO p, and α is a real scaling parameter such
that, for pure DFT kernels, α = 0, whereas, for hybrid DFT, the
scaling factor α determines the fraction of Hartree−Fock
exchange to be included. The eigensystem of eq 1 describes the
electronic adiabatic states of the molecular system with the
eigenvalues corresponding to the electronic resonances
(excitation energies) of the system, while the corresponding
eigenvectors describe the orbital excitation and de-excitation
amplitudes for the adiabat. In the case of real-valued matrices,
A* = A and B* = B, so one can also solve the equivalent
problem of half the dimension:5,8,30

ω− + | + ⟩ = | + ⟩A B A B X Y X Y( )( ) 2
(6)

2.1. Davidson-like Methods. For many systems of
chemical interest, the dimension of the matrices is far too
large to store in memory for full diagonalization and must be
partially diagonalized by iterative methods. One of the most
well-known methods for iterative diagonalization of the CIS
equations was proposed by Davidson in 1975.4 Modifications
have allowed it to be extended to the RPA equations,5,6,8,31 as
well as providing restricted excitation14−16 or energy-specific
windowing11,13 to obtain higher-energy roots. The following is
a basic overview of the energy-specific algorithm used here, but
for a detailed implementation of the Davidson algorithm for
solving the RPA equations, we invite the reader to see refs 11 or
32.
The basic idea of the Davidson algorithm is to work in a

much smaller reduced dimensional search space and find the
best approximate (right) eigenvectors for eq 6 as a linear
combination of basis vectors |bi⟩:

∑| + ⟩ = | ⟩
=

cX Y bj j
i

m

ij i
1 (7)

where the coefficients cij are found by diagonalization of the
subspace problem. To do this, the action of the (A+B) and
(A−B) matrices on the bi vectors is calculated directly.
Stratmann et al.8 then noted that, in the limit of convergence,
⟨bi|(A − B)(A + B)|bj⟩ will have the same solutions as

∑̃ = ⟨ | − | ⟩⟨ | + | ⟩M b A B b b A B bij
k

i k k j
(8)

This non-Hermitian matrix product is diagonalized to
determine the best approximate right and left eigenvectors
|R̃⟩, |L̃⟩, and the corresponding eigenvalues ω̃ in the subspace.
The eigenvectors contain the coefficients to transform |R̃⟩ and
|L̃⟩ from the reduced space to the full MO space (|R⟩, |L⟩). In
the energy-specific case, we choose to transform the first n
eigenvectors with ω̃i ≥ ω0, where ω0 is the energy threshold.
Otherwise, one can take ω0 = 0 and transform the n lowest
energy roots.
To determine if the approximation is good enough, the left

and right components of the residual vectors |Wn⟩ are given by

ω| ⟩ = + | ⟩ − ̃ | ⟩W A B R L( )n n n n
L

(9)

and

ω| ⟩ = − | ⟩ − ̃ | ⟩W A B L R( )n n n n
R

(10)

If the residuals are nonzero, new vectors are constructed and
added to the subspace. While the residual vectors could be
added to the set of |bi⟩ without further modification, it is more
efficient to use a preconditioner to achieve quasi-second-order
information. Since the left-hand side of eq 1 is diagonally
dominant with the orbital energy differences, the precondi-
tioned residual vectors are given by

ω= ̃ − Δϵ −Q W( )n inin
1

(11)

Here, the Δϵ term represents the orbital energy differences
along the diagonal of A. These Q vectors are added to the set of
existing b, and the entire process is repeated until the norm of
the residuals falls below a specified threshold (or equivalently
that ω̃i stop changing) and convergence is achieved. As the
number of basis vectors bi approaches the full dimension of the
matrix, the approximation greatly approaches the exact solution.
However, it is also possible that the number of bi grows very
large before convergence, in which case the algorithm can be
restarted by collapsing the subspace down to a small number of
vectors, using the best |R⟩ and |L⟩.

2.2. The GPLHR Method for Obtaining High-Energy
Excited States. The GPLHR algorithm is a recently proposed
method28 to iteratively solve the generalized eigenvalue
problem for arbitrary non-Hermitian square matrices and

:

ω| ⟩ = | ⟩x x (12)

Note that, in the context of eq 1, and are represented
here in the full dimension problem and not the half-dimension
problem in eq 6, as are all other quantities in calligraphic script
font.
In particular, GPLHR aims to improve the convergence and

performance of iterative diagonalization for a targeted region in
the interior of the spectrum. That is, given some target shift σ,
GPLHR attempts to find the n eigenvalues ωi closest to σ along
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with the associated eigenvectors |xi⟩. We also note here that,
unlike the strict lower-bound ω0 used in energy-specific
Davidson algorithm, we obtain the closest values to σ both
above and below.
An excellent technical report of the GPLHR algorithm is

published elsewhere,28 to which we refer interested readers.
Here, we provide an overview of the salient points to facilitate
comparison with the Davidson and Lanczos families of
algorithms, as well as how these two methods can complement
each other in an adaptive hybrid scheme for the TDHF/
TDDFT problem.
First, given some set of orthonormalized initial guess (right)

vectors , we form the set of vectors in the σ-shifted space,
according to

σ= −( ) (13)

followed by orthonormalization. The generalized eigenproblem
† †( , ) (14)

can then be solved to obtain initial approximations for ω̃i. Since
is in the σ-shifted space, we obtain a better approximate ω̃i

near σ through the harmonic Rayleigh-Ritz procedure.
Although eq 14 can be solved by diagonalization-based

methods, we instead use generalized Schur decomposition (also
known as QZ factorization), which has the advantage of being
well-defined for any two matrices. From the Schur decom-
position of eq 14, we obtain the triangular factors 1, 2, as
well as Schur bases L, R , such that

=†
L 1 R (15)

and

=†
L 2 R (16)

The eigenvalues are given by the ratio of the diagonal
elements of the triangular factors:

ω =
j j
j j

( , )
( , )j

1

2 (17)

The Schur vectors L and R can be used to update and
, with → R and → L. More importantly, we can

use the information in the triangular factors in the process of
generating new vectors to form a new test subspace and
generalized eigenproblem.
In contrast to the Davidson algorithm, in which the subspace

grows at each iteration, GPLHR generates a subspace of fixed
size based on an integer parameter m. This is used to update
the current solution but is discarded and not reused on
subsequent iterat ions . This tr ia l subspace =
[ , , , ..., , ]m1 corresponds to the Krylov−Arnoldi
sequence generated by the preconditioned residuals and is
constructed as shown in Algorithm 1.

is an additional block of saved vectors and is not used on
the first iteration. The matrices 1 and 2 are diagonal and
constructed from the triangular factors 1 and 2 as follows:

=
| | < | |

−

⎧
⎨⎪

⎩⎪
j j

j j j j

j j
j j

( , )

0 ( , ) ( , )

1 ( , )
( , )

otherwise1

1 2

2

1 (18)

=
| | < | |

⎧
⎨⎪
⎩⎪

j j j j
j j j j

( , )
1
( , )

( , ) ( , )

1 otherwise
2 2

1 2

(19)

For the preconditioner , we use the inverse of the
difference between the approximate eigenvalue ω̃ and the
diagonal elements of , which are given by the orbital energy
differences.
From the trial space , the analogous set of vectors in the σ-

shifted test space is formed:

σ= −( ) (20)

Again, we can solve the reduced-dimensional generalized
eigenvalue problem † †( , ) by generalized Schur
decomposition, noting that the obtained ω̃i are significantly
improved in the region of the eigenspectrum near σ. This yields
new factors ̃

1 and ̃
2, as well as Schur bases ̃

L, ̃
R . Since the

dimension of the eigenproblem in eq 20 is larger than the
number of roots that we seek, the eigenvalue−eigenvector pairs
are ordered by closeness to the shift value σ, using the standard
norm of a complex number given by

| + | = +a bi a b( ) 2 2
(21)

At this step, it is important to note that the sorting procedure
also requires recomputing the factors ̃

1, ̃
2, ̃

L, and ̃
R . The

matrices ̃
1 and ̃

2 are then truncated to the first n columns
and n rows to form a new 1 and 2. Now we can construct
new , from the left and right Schur bases as

= ̃ ̃ nwith truncated to the first vectorsR R
(22)

= ̃ ̃ nwith truncated to the first vectorsL L
(23)

In addition, we can store the second set of n vectors (eq 22)
in , to be used on subsequent iterations:

= ̃ ̃ +n nwith truncated to vectors 1 to 2R R
(24)

We evaluate the convergence of eigenvectors and continue
iterations if necessary. Note that the residual of a trial
eigenvector i is given by

ω− ̃i i i (25)

These residuals are exactly the vectors calculated in the
block before preconditioning. In addition to evaluating the
norm of the residual vector, we also consider a root converged
if the change in the eigenvalue is below some (generally lower)
threshold.
However, one interesting property of the Davidson algorithm

with energy-specific windowing that is not present in GPLHR is
the ability to set a hard energy cutoff for converged roots. This
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is often useful to build up a spectrum from multiple calculations
on smaller numbers of roots. While basis deflation can also be
used to augment the number of vectors,28 instead of obtaining
solutions with energy greater than the specified value σ, the
solutions could, in principle, all be less than σ. Instead, one can
also adaptively choose σ such that the n closest vectors are all
above the cutoff.
More concretely, if the hard threshold is d, then suppose we

start with σ = d and let ω1, ..., ωn be the first n Ritz values with
ωi > d and ω0 be the Ritz value closest to σ such that ω0 < d.
Ideally, one should keep σ as close to d as possible to prevent
missing any roots. Intuitively, we move σ just far enough to
exclude the first Ritz value that is below our chosen threshold,
as depicted in Figure 1. That is, calculate the midpoint m of ωn
and ω0 and use this m as the new σ′ if m > d, otherwise let σ′ =
d. Note that σ is never less than d.

2.3. An Adaptive Davidson/GPLHR Hybrid Algorithm.
The motivation for an adaptive diagonalization algorithm may
be best described in analogy to similar techniques used for the
SCF procedure and geometry optimization. Quadratically
convergent SCF is often too expensive to be used as a method
of first choice, but may be employed as a complement to first-
order SCF methods on an as-needed basis. Similarly, previous
work has found that using a combination of methods for
molecular geometry optimization can lead to superior perform-
ance.33 In this work, the development of a hybrid Davidson/
GPLHR algorithm is motivated by two considerations:
performance and robustness. As mentioned previously, on
average, the computational cost of Davidson-like algorithms are
less than GPLHR.29 While the Davidson method provides
symmetrized trial vectors that lead to optimal performance in
exploring the selected subspace, in the non-Hermitian case, it is
possible for the generalized eigenvalue problem to have
complex eigenvalues, which leads to a loss of monotonic
convergence.32 Poor approximations in the ω̃i also leads to the
generation of new vectors that have little overlap to the true
solutions. Without reasonable approximations to the correct
eigenvalues, the new vectors generated to augment the
subspace are of little value. This is especially common for
dense manifolds of states, such as those appearing in the higher-
energy X-ray of condensed matter.
On the other hand, GPLHR uses a harmonic Rayleigh−Ritz

procedure to locate the eigenvectors with eigenvalues closest to
a specified value σ. More-stable convergence is also achieved by
transferring additional information about subspace search
directions from a block of extra Schur vectors, in contrast to
the search direction employed by other methods such as
LOBPCG.34 Despite the algorithmic similarities, GPLHR

changes the subspace vectors at each iteration and evaluates
their quality systematically by solving the problem in the σ-
shifted space. This is in contrast to the Davidson-like
procedure, where poor information is not discarded.
In order to switch between the half-dimensional space of eq

6 being used for Davidson and the full space in eq 1, one can
take linear combinations of the left |L⟩ = |X − Y⟩ and right |R⟩
= |X + Y⟩ eigenvectors to obtain the X and the Y components
for some vector . These vectors are used as the initial “guess”
for the GPLHR method. From eq 1, we compute the matrix−

vector product for a given trial vector ( )X
Y

i
i

as

+

+

⎛
⎝⎜

⎞
⎠⎟

AX BY

BX AY
i i

i i (26)

where we have assumed real orbitals so that A* = A and B* =
B. It is easy to show that

+ = + + + − −AX BY A B X Y A B X Y
1
2

[( )( ) ( )( )]i i i i i i

(27)

and

+ = + + − − −BX AY A B X Y A B X Y
1
2

[( )( ) ( )( )]i i i i i i

(28)

Construction of the matrix−vector products (A + B)(X + Y)
and (A − B)(X − Y) is accomplished by direct contraction,
using the same algorithms as those used for the Davidson
method.
The key question for the adaptive scheme is deciding when

to switch from the Davidson algorithm to GPLHR. One option
is to let the Davidson algorithm run for a set number of
iterations and switch if not converged. Similarly, we could
switch when the subspace becomes too large and the Davidson
algorithm is forced to restart. These are simple to implement
and account for at least some situations where convergence was
difficult. A more-systematic option is to analyze the
convergence behavior itself to determine when subsequent
iterations and generated vectors are unlikely to be useful. To do
this, we can consider several error metrics. For eigenvalues, we
expect the difference in consecutive iterations to go to zero and
calculate the norm of the difference vector at iteration i:

δ

ω

ω
=

Δ
⋮

Δ

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟i

n

1

(29)

The sequence of {δi} should be decreasing as we get closer to
convergence and provides an overall measure of how close all n
roots are to convergence. Note that this is also dependent on
the quality of the mapping roots from one iteration to the next.
Similarly, for eigenvectors, we expect the residuals, under the
action of the RPA matrix, to approach zero.

Ω= ∥ −r H M( )i (30)

This sequence of {ri} should also approach zero at
convergence. In order to determine when to switch, we can
examine the sequences of the δi and the ri. If the difference in
eigenvalues in consecutive iterations is not decreasing, or
equivalently, that enlarging the subspace is not useful, it could
be indicative of oscillation or other problems in convergence.

Figure 1. Scheme for adaptive choice of shift value σ. Given some set
of Ritz values, we may choose a new σ′ to maximize convergence for
the first n vectors above a threshold d.
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While it would be tempting to switch immediately if either δi or
ri increase, we have found that, even in the case of rather well-
behaved systems, the convergence of {δi} and {ri} to zero might
not be monotonic. To allow for this, we recommend counting
the number of iterations in which δi or ri increase and only
switch after a set limit is reached.

3. RESULTS AND DISCUSSION
The GPLHR and associated hybrid methods were implemented
in a locally modified version of the development version of the
Gaussian software package,35 which includes the energy-specific
Davidson method.8,11−13 All calculations were run using spin-
unrestricted density functional theory (DFT) with the B3LYP
density functional, unless stated otherwise, and molecular
geometries were optimized at the same level of theory.36,37

Geometries used in benchmarks are given in the Supporting
Information. Convergence was determined when either (1) the
norm of all the residuals was below a set threshold, ∥r∥ < 10−5,
or (2) the change in eigenvalues is less than 10−7 Hartrees. All
calculations were run on a single compute node with dual Intel
Xeon E5-2680 v4 processors for a total of 28 cores and 256 GB
DDR3 RAM.
In this first test, we show the agreement of the eigenvalues,

and associated eigenvectors found by our GPLHR-based
approaches match those given by the energy-specific Davidson
algorithm. In Table 1, the first three states of the nitrogen K-

edge above 380 eV in NO were computed with the 6-
311+G(d) basis set.38,39 The GPLHR calculation used a
subspace expansion parameter of m = 1. Note also that, since
each GPLHR iteration is roughly 4 times more expensive than a
single Davidson iteration, it is performing almost twice as much
work in this test case. Although there are very slight differences
in excitation energies and oscillator strengths due to numerical
differences in convergence, the results of the Davidson and

GPLHR algorithms are considered to be identical. Interestingly,
at the standard threshold used here, we find that GPLHR gives
a better solution than obtained in the Davidson algorithm, as it
matches the solution obtained at stricter convergence criteria.
Generally, for well-behaved RPA problems, such as those for

small to moderately sized molecular systems, we found that the
Davidson algorithm consistently outperforms GPLHR. This
itself is not surprising as GPLHR is designed for much more
challenging problems, so that it often does more work than
necessary. However, for systems that exhibit a dense manifold
of excited states, we find that using GPLHR for some or all
iterations is preferred. Two illustrative examples of this are
explored here: a graphene sheet and a nanodiamond. In these
systems, the carbon K-edge region consists of a dense manifold
of C(1s)→ C(2p) transitions arising from nearly chemically
equivalent carbon atoms. Such scenarios are known to be very
challenging for Davidson-like methods.
For a small cluster of graphene sheet (a C28H14 structure, as

shown in Figure 2), the first 8 states of the carbon K-edge were
calculated at the unrestricted B3LYP/6-31G(d)36,37,40,41 level
of theory, using a combination of Davidson and GPLHR
iterations. For each calculation, a set number of Davidson
iterations were performed first, followed by GPLHR iterations
until convergence. In Figure 2, we plot the cumulative number
of matrix vector products, since this is the computational
bottleneck. The hybrid(n) methods denote a calculation that
started using the Davidson algorithm and switched to GPLHR
after n iterations. Despite all algorithms converging to the
correct roots, the computational cost was least for the hybrid
methods. In particular, we note that the hybrid(12) method
lead to almost 20% speedup over GPLHR alone, while using
only the Davidson algorithm was almost 70% slower. This
indicates that there was little benefit of GPLHR over the
Davidson algorithm in the first few iterations, and, as a result,
extra work was being done. From an algorithmic perspective,
this is not too surprising, as the beginning iterations have
relatively little information and therefore do not need to be
very accurate in extrapolation to provide usable information.
Conversely, one of the key reasons why the Davidson type of
algorithm struggles here is that it will often include approximate
eigenvectors with energies largely dominated by the residual
term. This results in new trial vectors being generated that do
not aid in capturing the desired region of the spectrum and
leads to stagnation. The question that remains is what is a

Table 1. Nitrogen K-edge of NO (σ = 380 eV)

ES-Davidson (13 iterations) GPLHR (7 iterations)

excitation
energy (eV)

oscillator
strength
(a.u.) ⟨S2⟩

excitation
energy (eV)

oscillator
strength
(a.u.) ⟨S2⟩

385.5845 0.0000 2.752 385.5844 0.0000 2.752
386.8976 0.0697 0.753 386.8974 0.0701 0.753
387.3633 0.0341 0.760 387.3632 0.0342 0.760

Figure 2. (Left) Cumulative number of matrix vector products performed at each iteration for the energy-specific Davidson, GPLHR, and hybrid
methods. Here, Hybrid(n) indicates that n Davidson iterations are performed before switching to GPLHR. The steeper slope of GPLHR indicates
that a single iteration is more expensive than a Davidson iteration. (Right) eigenvalue convergence profiles for the fifth root above the threshold, with
a vertical excitation energy of 273.468 eV. Iterations before the states could be mapped between iterations are not shown.
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sensible strategy for switching to GPLHR from a Davidson
calculation when we do not know a priori how the Davidson
algorithm will perform.
The determination of the carbon K-edge spectrum in a

nanodiamond cluster was used to test the power of the
algorithm on an even larger system. The C121 structure is H-
capped with 104 H and has C3v symmetry, as shown in Figure
3.42 The 6-31G(d) basis set40,41 and B3LYP36,37 density
functional were used for optimization and TDDFT calculations.
With 2023 contracted basis functions and 830 total electrons,
the dimension of the full RPA matrix is 2 669 280. Of course,
the computational bottleneck is the direct formation of the
matrix−vector products. The energy-specific Davidson algo-
rithm used with a threshold of 260 eV was unable to converge
the first 10 roots after almost 70 iterations, as shown in Figure
3. However, all GPLHR-based hybrid algorithms with σ = 260
eV were able to converge with relative ease. Although the
Davidson algorithm is unable to converge this system, forcing
the switch to GPLHR on-the-fly also allowed the calculation to
be completed successfully. Note that using GPLHR from the
beginning would have been optimal for this case; however, the
sequences of the error in both the eigenvalues and the residuals
show clear signs of problems converging by approximately
iteration 5 or 6, using the Davidson method (see Table 2).
While it would be impossible to make an optimal general
switching rule for all systems, the sequences of error seem to
indicate that two or three poor iterations is a reasonable, albeit

crude decision metric for detecting breakdown or stagnation.
This switching criterion corresponds to the hybrid(5) test
shown in Figure 3. At the heart of this problem is the failure to
identify the best approximate eigenvectors. Despite the inability
of the hybrid method to outperform using the GPLHR
algorithm alone on this system, the adaptive hybrid method was
nevertheless successful in minimizing the wasted computational
effort in the Davidson iterations.

4. CONCLUSION

This paper presents an implementation of a hybrid Davidson−
GPLHR algorithm for the solution of the non-Hermitian
TDHF/TDDFT equations and explores several modifications.
First, since the standard energy-specific Davidson algorithm
often performs well, we include the ability to switch to the
GPLHR solver on the fly. The additional cost that GPLHR
suffers by doing more work than is often necessary for the RPA
problem makes it less desirable to use on its own, but it can
provide additional robustness for hard-to-converge problems
with dense sets of states in the interior of the spectrum. Second,
we also include the ability to have the shift value σ adaptively
change so that only the first n states above a predefined energy
threshold are obtained. This feature is crucial to avoid
reconvergence of states when predicting the absorption
spectrum over a broader energy range.
Note that, if the matrix can be stored in memory, standard

diagonalization routines should always be used. However, this is
often not practical for many systems of interest, and one must
resort to using iterative direct methods where the matrix−
vector products are performed on-the-fly. Adaptive switching
between diagonalization methods has the potential to provide
superior performance in hard-to-converge eigenvalue problems,
including those that are common in X-ray spectroscopy of
molecular systems. However, even in cases where using either
algorithm alone would be optimal, the adaptive hybrid method
provides a reasonable compromise without knowing a priori
which one is best.
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Figure 3. (Left) Cumulative number of matrix−vector products for the C121H104 nanodiamond at the 6-31G(d)/UB3LYP level of theory. Hybrid(n)
indicates that n Davidson iterations are performed before switching to GPLHR. (Right) eigenvalue convergence profile for the first root above the
260 eV threshold, with a vertical excitation energy of 276.681 eV. Iterations before the states could be mapped between iterations are not shown.
Note that the Davidson calculation did not converge within the 70 iterations.

Table 2. Norms of Eigenvalue and Residual Errors at Each
Davidson Iteration for the C121H104 Nanodiamond at the 6-
31G(d)/UB3LYP Level of Theorya

iteration eigenvalue error (a.u.) {δi} residual error (a.u.) {ri}

1 64.4953 0.00625
2 0.01464 0.00616
3 0.00608 0.00516
4 0.00139 0.00523
5 0.00823 0.11783
6 0.52223 0.08276
7 0.30772 0.27291
8 0.21657 0.00600
9 0.04076 0.08877
10 0.00648 0.09303

aThe two sequences of {δi} and {ri} can be used to determine failure
of the Davidson algorithm.
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