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ABSTRACT: Projected Hartree−Fock (PHF) theory can restore important symmetries to broken symmetry wave functions.
Variation after projection (VAP) implementations make it possible to deliberately break and then restore a given symmetry by
directly minimizing the projected energy expression. This technique can be applied to any symmetry that can be broken from
relaxing constraints on single Slater determinant wave functions. For instance, generalized Hartree−Fock (GHF) wave functions
are eigenfunctions of neither S ̂z nor S2. By relaxing these constraints, the wave function can explore a larger variational space and
can reach lower energies than more constrained HF solutions. We have implemented spin-projected GHF (SGHF), which
retains many of the advantages of breaking symmetry while also being a spin eigenfunction, with some notable improvements
over previous implementations. Our new algorithm involves the formation of new intermediate matrices not previously discussed
in the literature. Discretization of the necessary integration over the rotation group SO(3) is also accomplished much more
efficiently using Lebedev grids. A novel scheme to incrementally build rotated Fock matrices is also introduced and compared
with more standard approaches.

1. INTRODUCTION

Strongly correlated systems present a unique challenge for
electronic structure theory. These systems typically have
degenerate or nearly degenerate orbitals which cause the single
determinant description of the wave function to break down,
leading to spontaneous symmetry breaking due to instabilities.
While this symmetry breaking will lower the variational energy
closer to the exact value, the approximate solution will not have
the same symmetries as the true solution. On the other hand, if
a solution is constrained to have the desired symmetries of the
exact solution this will raise the solution’s energy and can lead
to qualitatively incorrect descriptions of the system. Löwdin
referred to this as the “symmetry dilemma” where one must
make a choice on whether to enforce a particular symmetry or
find a lower energy broken symmetry solution.1

This dilemma has motivated the development of various
projection techniques to approximately or exactly restore
symmetries of broken symmetry wave functions. In this way
the energy is lowered by symmetry breaking and lowered
further by restoring the desired symmetry. The approximate
wave function and its properties are also made more similar to
the true solution. The simplest scheme is to apply a projection
operator after converging to a stable broken symmetry solution,
referred to as projection after variation (PAV). This projected
wave function is not variationally optimized making the
evaluation of properties and derivatives quite complicated.2−4

PAV also has difficulties near regions of spontaneous symmetry
breaking, which can lead to discontinuities in the potential
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energy surface. Further, most PAV implementations only
approximately restore spin symmetry, so there will still be
unresolved contaminating states.5 These problems can be
addressed by variationally optimizing the wave function in the
presence of the projection operator, known as variation after
projection (VAP).
The problems with PAV approaches led to the development

of the Extended Hartree−Fock method.6,7 This is a VAP
approach that uses Löwdin’s spin projection operator to
remove components of the wave function not having the
desired spin symmetry. While this method was successful in
many respects, Löwdin’s projection operator led to exceedingly
complicated SCF equations and was all but abandoned. Simpler
operators that restore spin symmetry have since been
developed, renewing interest in this body of work. Scuseria
and co-workers revitalized VAP techniques in the quantum
chemistry community by applying them to the Hartree−Fock−
Bogoliubov (HFB) and HF wave functions.8,9 They broke and
restored not only spin symmetry but also complex conjugation,
point group, and particle number in the case of HFB wave
functions. These contributions built off of a larger body of work
on symmetry projection in the nuclear physics commun-
ity.10−12 Projected Hartree−Fock (PHF) wave functions retain
the advantages of broken symmetry wave functions, namely, the
larger variational space, and also have the same symmetries as
the exact solution. In other words, they provide a solution to
the “symmetry dilemma”.
The PHF method accounts for the majority of static

correlation, but there is still a significant portion of dynamic
correlation that is unaccounted for. This motivated the
development of many techniques to add dynamic correlation
in much the same way as ordinary HF. Scuseria and co-workers
have worked to combine symmetry projection with DFT while
attempting to avoid double counting of electron correlation13

and have reformulated the spin-projected HF wave function in
terms of a polynomial similarity transformation to form a spin-
projected coupled cluster theory.14,15 Other groups have also
combined spin-projected HF with many-body perturbation
theory16 and configuration interaction.17,18 There have also
been efforts to develop a spin-projected linear response
formalism.19

The majority of the recent extensions of Scuseria’s original
work on PHF have focused on spin-projected unrestricted HF
(SUHF). Our work revisits spin-projected GHF (SGHF) and
provides ways to efficiently construct the PHF effective Fock
matrix. First, we present an algorithm that is easily parallelized
and minimizes memory usage by forming new intermediate
quantities. We also advocate using a Lebedev integration grid
when discretizing the integration over rotation angles and
discuss issues with convergence associated with sparse grids.
Finally, we present a novel scheme to incrementally build all
necessary rotated Fock matrices. These modifications greatly
reduce the cost of optimizing SGHF wave functions and will
make it possible to study larger molecular systems with this
method. Some of these techniques can also be used with
projected UHF and with other types of projection operators.

2. THEORY

Projected Hartree−Fock theory (PHF) describes the electronic
wave function in terms of a transfer operator (or a sum of
transfer operators) acting on a broken symmetry wave
function20,21

∑|Ψ ⟩ = |̂Φ⟩ = ̂ |Φ⟩P f Pm
S

k
k mk

S

(1)

where |Ψm
S ⟩ is a wave function with quantum numbers S and m.

The coefficients f k are determined by diagonalizing the
Hamiltonian in the basis of the transfer operators. These
operators are defined as linear combinations of group operators
Â weighted by elements of the matrix associated with that
operator in a particular irreducible representation

∑̂ = Γ * ̂
∈

P
l
h

A A( )mk
S S

A G

S
mk

(2)

The normalization factor lS and h are the dimension of the
irreducible representation ΓS and the order of the group,
respectively. These operators are meant to restore a particular
symmetry such as spin, particle number, complex conjugation,
or point group. The action of operator P̂mk

S produces a wave
function that transforms as the mth row of irreducible
representation ΓS, thus having m and S as good quantum
numbers. While these are not truly projection operators if m ≠
k, they do achieve the goal of preparing a wave function with
the desired quantum numbers.
The projected wave function is determined by minimizing

the projected energy expression

= ⟨Φ| ̂ |̂Φ⟩
⟨Φ| |̂Φ⟩

E
HP
P (3)

where we have used the fact that P̂ commutes with the
Hamiltonian and that it is idempotent. The specific form of P̂
and the representation of the broken symmetry wave function
will dictate how to efficiently minimize this function.

2.1. Spin-Projection Operator. Spin symmetry can be
restored by forcing the projected wave function to be invariant
to the axis of spin quantitation.22 The operator that
accomplishes this is expressed as

∫ ∫ ∫
π

α β γ

β α β γ

̂ = | ⟩⟨ |

= + π π π
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P S m S k
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mk
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mk
S i S i S i S

2 0

2

0 0

2

z y z

(4)

where Dmk
S (α, β, γ) is a Wigner rotation matrix element.23,24

The label S indicates the total spin of the projected wave
function and m and k are different spin projections along the z-
axis. This operator involves an integration over the rotation
group SO(3), and we will discuss how to efficiently discretize
this integration in later sections. This work will focus
exclusively on spin-projection as it has special significance in
the context of chemical problems, but much of the later
discussion is also applicable to the restoration of other
symmetries as we will point out where appropriate.

2.2. Spin-Projected Hartree−Fock. The PHF energy for a
particular spin symmetry is expressed as

∑= *
+

E f H fS

mk

S

m mk k

2 1

(5)

where the Hamiltonian matrix elements are

= ⟨Φ| ̂ ̂ |Φ⟩H HPmk mk
S

(6)
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This matrix is of the dimension of the number of different spin
projections (2S + 1). The energy expression is a function of the
broken symmetry density ρ formed from the broken symmetry
molecular orbital coefficients

∑ρ = *
μν μ νC C

i

N

i i

occ

(7)

and the linear coefficients f defining the expansion of the
projected wave function in terms of transfer operators. The
stationary conditions for this variational problem are
determined from variations in the following Lagrangian under
the constraints that the broken symmetry density remains
idempotent and that the projected wave function is normalized

∑

∑

ρ ρ ρΛ= * − −

− * −
⎛
⎝
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⎞
⎠
⎟⎟

f H f
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1

[ , ] Tr[ ( )]S

mk
m mk k

S

mk
m mk k

2

(8)

where we have introduced the projected overlap matrix
elements

= ⟨Φ| ̂ |Φ⟩W Pmk mk
S

(9)

The stationary conditions resulting from variation of this
Lagrangian with respect to the linear coefficients leads to the
generalized eigenvalue problem

= EHf Wf S (10)

This is a small configuration interaction (CI) problem in the
basis of the different spin projections along the z-axis. The
linear coefficients and the energy of the system are obtained by
solving this problem. Variation of the Lagrangian with respect
to the broken symmetry density leads to a familiar stationary
condition

ρ = 0[ , ] (11)

where is not the standard Fock matrix but an effective Fock
matrix. This matrix is defined as

∫∑= * −f f g w g E Xd ( )( )
mk

m k mk g
S

g
(12)

where wmk(g) is a weight, g is a matrix defined at a given
rotation angle, and Xg is related to the derivative of the overlap
matrix W. Explicit expressions for these terms can be found in
the Appendix but are left out of this section for brevity. The
above stationary condition can be satisfied by solving the PHF
self-consistent field (SCF) equation

ϵ=C C (13)

in much the same way as for ordinary HF, but while also
solving eq 10 to obtain the linear coefficients every SCF
iteration.

3. COMPUTATIONAL DETAILS
Spin-projected generalized Hartree−Fock has been imple-
mented in the Chronus Quantum software package.25 This
implementation forms new intermediates not discussed in
previous works and also takes a novel approach to
incrementally forming Fock matrices.
The effective Fock matrix is a function of the linear

coefficients f, the energy ES, and involves an integration over

the rotation angles g (eq 12). The Hamiltonian H and overlap
matrix W are also formed by integrating over the rotation
angles and are used to determine the linear coefficients and
energy, so the effective Fock matrix cannot be completely
formed until eq 10 is solved during each SCF iteration.
One approach would be to form the Hamiltonian and

overlap matrices, solve eq 10, and then began the process of
forming the effective Fock matrix. Code structured in this way
would require many intermediate quantities used to form the
Hamiltonian, overlap matrix, and effective Fock matrices to be
stored in memory. These include all the rotated density
matrices and rotated Fock matrices at each point in the
integration over g (see the Appendix for explicit expressions).
This structure also requires multiple loops over the integration
grid, an undesirable condition if parallelizing over integration
points. We can simplify the scheme and only loop over the
integration grid once every SCF cycle by forming new
intermediate matrices

∫= g w gd ( )mk mk g (14)

∫= g w g Xd ( )mk mk g (15)

The number of intermediate matrices scales with the size of the
CI problem, so there will only be (2S + 1)(2S + 2)/2 matrices
or the dimension of the lower triangle of the Hamiltonian.
Although for the special case of singlet projection, the effective
Fock matrix can be formed directly with no intermediate
matrices being necessary. After this integration, we can solve eq
10 to determine the linear coefficients and then contract them
with these intermediate matrices to complete the formation of
the effective Fock matrix. The general structure of this
algorithm is presented in Figure 1.

This scheme is advantageous for several reasons. For one,
this structure makes it simpler to limit memory usage in the
case where all rotated densities, overlap matrices, and rotated
Fock matrices cannot be stored in memory at one time,
although this is an unlikely scenario on most modern machines.
There are similar memory requirements for the incremental
Fock build scheme to be presented later, but these intermediate
matrices still remove any need to loop over the grid points
more than once. Another advantage is that all integration points
are independent, so the loop over g can easily be split over
several cores and the collected quantities formed after each core
has completed its task.

Figure 1. Schematic of the algorithm for spin-projected GHF.
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Spin projection operators involve an integration over the
rotation group SO(3), which must be discretized in some way.
Previous implementations of SGHF advocated using a
Trapezoid grid for integration over α and γ and a Gauss-
Legendre grid for integration over β.8 These choices result in
very dense integration grids since about 10 points for each
angle are usually necessary to adequately restore spin
symmetry. At each integration point, rotated Fock matrices
need to be constructed, which is the most computationally
expensive operation. Any reduction in the number of grid
points should therefore significantly reduce the cost of a
calculation.
The integration over SO(3) can be broken down to two

surface integrals over a 2-sphere S2 and one over S1.26 Lebedev
integration grids discretize the surface integral of a 2-sphere and
are commonly used when evaluating DFT exchange correlation
functionals.27,28 All integration points lie on the surface of a
unit sphere and are invariant under the octahedral rotation
group with inversion. They are classified into different orders,
where the order n grid integrates exactly all spherical harmonics
of order n or less. Lebedev grids are efficient schemes to
evaluate the surface integral of a unit sphere and can be used to
integrate over the α (or γ) and β rotation angles for spin-
projected GHF. Compared to the mixed Trapezoid and Gauss-
Legendre grid, far fewer integration points are required to
achieve the same accuracy in spin symmetry restoration. Our
implementation uses a Lebedev grid for integration over S2 (α
and β) and a Trapezoid grid for integration over S1 (γ).

4. RESULTS AND DISCUSSION
4.1. Lebedev Grid. We have compared two different

schemes to discretize the spin-projection operator. The first
scheme uses a Trapezoid grid for α and γ and a Gauss-Legendre
grid for β denoted as TrapGaussLeg(nα, nβ, nγ) and the second
uses a Lebedev grid for α and β with a Trapezoid grid for γ

denoted as LebedevTrap(nαβ, nγ). Table 1 shows the error in
spin symmetry restoration and the error in the converged
energy relative to a denser grid that yields the lowest energy
solution. All calculations begin with a converged UHF or GHF
solution as the initial guess for the SGHF calculation. The
percent error of ⟨S2⟩ relative to that of the starting UHF/GHF
solution is also included to show the percentage of the starting
spin contamination remaining as a measure of the quality of the
spin projection.
Our comparison aims to determine the smallest grid required

to restore the desired spin symmetry with an error <1.0 × 10−10

(the energy convergence criteria in these calculations). In Table
1 the largest grid in each category is the smallest grid that meets
this criteria. For H3 the atoms were arranged in an equilateral
triangle with 1 Å separation. The broken symmetry GHF
solution has ⟨S2⟩ = 0.838 and spin projection restores the
system to doublet symmetry. The O2 bond length was
optimized with UHF and the 6-31G basis set29 (⟨S2⟩ =
2.034) using the Gaussian16 software package30 and the
projection operator restores triplet symmetry.
Minimal basis H3 is an extreme example illustrating the

benefit of Lebedev grids as the smallest Lebedev and Trapezoid
grids achieve perfect spin symmetry restoration within machine
epsilon. The LebedevTrap(6,2) grid has ∼3.33 times fewer grid
points than the TrapGaussLeg(2,10,2) grid, but does a better
job of restoring the system to doublet symmetry. Both grids
converge to the same energy within the convergence criteria, so
no errors are reported. The smaller TrapGaussLeg grids show
comparable errors in spin symmetry restoration to that of the
converged energy. For O2 with the 6-31G basis set, ∼ 2.7 times
fewer points are required when using a Lebedev grid. These
calculations are representative of the savings seen for other
systems.
There are two notable problems that can arise when the

integration grid is not dense enough. The first is that the error

Table 1. Error of ⟨S2⟩ and Energy for Different Integration Gridsa

molecule basis set grid no. points ⟨S2⟩ error remaining spin cont. energy error (Eh)

H3 STO-3G TrapGaussLeg(2,2,2) 8 8.234 × 10−2 93.7% 1.434 × 10−2

TrapGaussLeg(2,6,2) 24 1.279 × 10−5 1.45 × 10−2% 1.646 × 10−6

TrapGaussLeg(2,10,2) 40 2.808 × 10−12 3.20 × 10−9%
LebedevTrap(6,2) 12

O2 6-31G TrapGaussLeg(6,10,6) 360 1.024 × 10−9 3.02 × 10−6% 1.91 × 10−10

TrapGaussLeg(7,10,7) 490 −5.620 × 10−12 1.66 × 10−8%
LebedevTrap(14,6) 84 8.760 × 10−10 2.58 × 10−6% 1.40 × 10−10

LebedevTrap(26,7) 182 −7.017 × 10−14 2.07 × 10−10%
aNote that an optimized TrapGaussLeg algorithm may lead to a smaller number of grid points than in our implementation, but the LebedevTrap
grid is still optimal in all cases.

Figure 2. SGHF convergence behavior of triplet O2 modeled with the 6-31G basis set with the TrapGaussLeg(6,6,6) (A) and TrapGaussLeg(8,8,8)
(B) grids.
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in forming the overlap matrix (eq 9) may be so great that it is
not positive definite, making the generalized eigenvalue
problem in eq 10 ill-defined. The other problem concerns
convergence when the integration error is greater than or
comparable to the convergence criteria. Both of these problems
present themselves when modeling triplet O2. The overlap
matrix is not positive definite when using the LebedevTrap-
(6,6) grid although an even smaller grid was successful at
restoring spin symmetry for H3. The three grids presented in
Table 1 all converge in 12 SCF iterations, but smaller grids
oscillate about the correct energy when the error in symmetry
restoration is greater than the convergence criteria. Figure 2
shows the convergence behavior for smaller integration grids
that did not converge within 200 iterations despite using the
same initial guess and optimization scheme as the grids in Table
1.
The error in spin symmetry restoration may dictate whether

self-consistency can be reached and should be used to
determine whether a denser integration grid is necessary.
This also means that sparser integration grids can likely be used
if the energy convergence criteria are looser. This has
implications beyond just spin-projection and should be an
important consideration when using other projection operators
that require discretization of an integration, such as when
restoring particle number symmetry for HFB wave functions.
4.2. Incremental Fock Build. During the PHF SCF

procedure, a rotated Fock matrix needs to be formed at each
grid point in the integration over the rotation angles

ρ ρ= +F h G[ ] [ ]g g (16)

where h is the core Hamiltonian and G[ρg] is the perturbation
tensor defined as

∑ρ ρ= ⟨ ⟩ik jlG( [ ]) ( )g ij
kl

g lk
(17)

and ⟨ik∥jl⟩ are antisymmetrized two-electron integrals. We can
take advantage of the fact that this matrix is linear in the density
to more effectively screen two-electron integrals and reduce the
cost of forming this matrix.
For ordinary HF, if the two-electron integrals cannot be

stored in memory (or if writing/reading them from disk is too
slow) they can be computed directly at each SCF iteration
when forming the perturbation tensor. It is often advantageous
to incrementally form the Fock matrix by only calculating the
change in G at SCF iteration k

ρ ρ ρ= + Δ−F F G[ ] [ ] [ ]k k k1
(18)

where the density difference is Δρk = ρk − ρk−1. The two-
electron integrals used to form G[Δρk] can be screened more
effectively since the density difference should be very small
between SCF cycles and will approach zero as the calculation
nears convergence.31 For instance, the two-electron integrals
used to construct G can be screened using the Schwartz
inequality

ρ ρ⟨ | ⟩ ≤ ⟨ | ⟩ ⟨ | ⟩ij kl ij ij kl kllj lj (19)

If the RHS of the above equation is below a particular
threshold, then the ⟨ij|kl⟩ integral does not need to be evaluated
as its contribution will not be significant. Obviously more
integrals will fall below a given threshold and can be screened
out if the argument to G is smaller.

This same approach can be used to build the rotated Fock
matrices in eq 16. All the rotated Fock matrices and all the
density differences at each integration point can be stored and
used to update the rotated Fock matrix during the next SCF
cycle. A rotated Fock matrix at SCF cycle k can be calculated as

ρ ρ ρ= + Δ−F F G[ ] [ ] [ ]g
k

g
k

g
k1

(20)

where Δρgk = ρg
k − ρg

k−1. In the case where all these integral
contractions were being done simultaneously, the mechanism
for screening integrals is not clear. All ρg will not have the same
screening profiles, so choosing any single density to screen all
others would likely lead to large errors in the Fock formation. It
should also be noted that storing many rotated matrices every
SCF cycle does require a nontrivial amount of memory.
However, on modern compute clusters and with the smaller
grids presented in the previous section, this likely will not be an
issue in most cases. Also this memory requirement is certainly
smaller than that required to store all two-electron integrals in-
core (the constraint that would prompt one to directly build
Fock matrices).
For spin-projected HF, not only should densities be very

similar between each SCF iteration, but many of the rotated
densities at each SCF iteration should also be very similar to
one another. This can be leveraged to screen even more
integrals during the construction of each Fock matrix. Rotated
Fock matrices can thus be built incrementally as

ρ ρ ρ ρ ρ= + − + ΔΔ−
′ ′

−F F G G G[ ] [ ] [ ] [ ] [ ]g
k

g
k

g
k

g
k

g
k1 1

(21)

where g′ denotes the previously evaluated grid point before g
and the density difference

ρ ρ ρ

ρ ρ ρ ρ

ΔΔ = Δ − Δ

= − − −

′

−
′ ′

−( ) ( )

g
k

g
k

g
k

g
k

g
k

g
k

g
k1 1

(22)

is between two SCF iterations and between two grid points. For
this scheme to be advantageous, the rotated density matrices at
consecutively evaluated grid points must be very similar. This is
not guaranteed to be the case for any random ordering, so the
grid points must be sorted to achieve this end. Unfortunately,
sorting grid points to be in an optimal ordering is equivalent to
solving the NP-hard traveling salesman problem.32 This is
obviously impractical and we have opted to use the greedy
nearest neighbor approach to highlight the potential of this
approach.33 After the first SCF iteration, the differences
between each rotated density are evaluated and the grid points
are reordered to minimize the differences between consec-
utively evaluate grid points. Future works will attempt more
optimal solutions to this problem, but this simple solution is
sufficient to showcase the utility of the approach.
We have optimized the SGHF triplet wave function of p-

benzyne with the STO-3G basis set and the LebedevTrap-
(50,10) grid using both screening approaches. The molecular
geometry was optimized at the UHF/STO-3G level of theory
with the Gaussian16 software package. When using the ΔΔρgk
matrix to incrementally build the Fock matrix we screen either
significantly more integrals, a comparable number, or margin-
ally fewer integrals than using Δρgk (Figure 3). We have denoted
the two approaches as “Delta” and “Delta−Delta” density
screening. At some grid points in the early SCF iterations, twice
as many integrals are screened using the Delta−Delta density
during the formation of the perturbation tensor. Although, the
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changes in the number of screened integrals at each grid point
also vary more dramatically using the Delta−Delta density. This
is likely due to the particular order in which the grid points are
evaluated and should change with a different ordering of the
grid points. The advantages of this new approach are
diminished near convergence where the norm of Δρg

k

approaches that of ΔΔρgk and very near convergence these
two approaches are comparable in how effectively they screen
two-electron integrals. These results suggest that we should
expect significant computational savings using this approach for
larger molecular systems.
Radical polyacetylene chains of increasing length illustrate

how large percentages of integrals can be screened by
incrementally building the Fock matrix. As the spatial extent
of the molecules increases, so does the percentage of integrals
screened. The doublet SGHF wave function of two, four, six,
and eight carbon chains have been optimized with the 6-31G
basis set and the LebedevTrap(26,8) grid. Figure 4 shows that
the Delta−Delta approach continues to follow the screening
achieved by the Delta approach as the system size increases. It
also continues to screen more integrals, a comparable amount,
or only marginally fewer than those screened by the Delta
approach. It should be noted that the cases where the Delta−
Delta approach screens fewer integrals could be addressed by
switching to the Delta approach based on the respective norms
of the difference densities. In this way an optimal integral
screening can be achieved for every Fock matrix formation.
There is also an alternative approach to using Δρgk or ΔΔρgk

that could be advantageous in some cases. The density
difference could instead be defined relative to the true PHF
density from the previous iteration

∫∑ρ ρ ρΔ ̃ = − * ′ ′ ′
−f f g w gd ( )g

k
g
k

ml
m l ml g

k 1

(23)

Memory requirements would be about half of what is required
for the Delta or Delta−Delta schemes. All rotated Fock
matrices from the previous iteration F[ρg

k−1] would need to be
stored, but the density matrices from the previous iteration
would not be. The fully integrated PHF density could be
formed and stored during the previous iteration without

needing to store the densities at each grid point. For most
calculations with hundreds to thousands of basis functions on
modern compute clusters, the Delta or Delta−Delta schemes
would still be the preferred choices. However, there are likely
limiting cases where memory constraints would require using
the density difference in eq 23.
These schemes can still be parallelized over integration

points. There are no additional considerations for the Delta
approach and the approach in eq 23 as they only require
information from the previous SCF iteration. The Delta−Delta
approach, on the other hand, must have information from the
previously evaluated grid point of the current SCF iteration.
This approach can still be used if the grid points are split into
batches across different processors, as the grid points in those
batches will still be evaluated consecutively and can use
information from the previous grid point. If the number of
processors is the same as or greater than the number of grid
points, then the Delta−Delta approach cannot be used. In this
case all grid points would be evaluated at the same time and the
standard Delta density approach could still be used. The need
to calculate two-electron integrals at each grid point for the
Delta−Delta approach to achieve optimal screening is
prohibitive in many cases and would not always be outweighed
by the improved integral screening and accuracy. The ordinary
Delta approach and the alternative scheme in eq 23 avoid this
problem by being able to contract with the densities at each
grid point simultaneously. Although, how to effectively define
the screening criteria for so many densities with different
profiles would need to be investigated further.

5. CONCLUSIONS
Spin-projected Hartree−Fock is a powerful technique for
describing molecular systems with a desired spin symmetry. It
retains many of the advantages of broken symmetry solutions,
such as having lower energy than more constrained solutions
while also preserving spin as a good quantum number. By
projecting out contaminating spin states, this addresses the
well-known “symmetry dilemma” and still scales as a mean-field
approach.

Figure 3. Percentage of two-electron integrals screened during the
construction of each Fock matrix for triplet p-benzyne using the STO-
3G basis and a LebedevTrap(50,10) grid. Using ΔΔρgk (Delta−Delta)
is either significantly better, comparable, or only marginally worse than
screening using Δρgk (Delta).

Figure 4. Percentage of two-electron integrals screened during the
construction of each Fock matrix for doublet polyacetylene chains
using the 6-31G basis and a LebedevTrap(26,8) grid. The two, four,
six, and eight carbon chains are included. The ΔΔρgk (Delta−Delta)
approach continues to track the screening achieved by the Δρgk (Delta)
approach and outperforms in many cases.
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This work builds off of previous developments from Scuseria
and co-workers to develop an efficient scheme to build the
effective Fock matrix of spin-projected generalized Hartree−
Fock. We have developed an algorithm that forms intermediate
matrices not previously discussed in the literature. We also
advocate using Lebedev integration grids to discretize the
integration over SO(3) when restoring spin symmetry. Far
fewer grid points are required than previously proposed grids to
achieve the same accuracy in spin symmetry restoration. Our
investigation of different integration grids also revealed that the
error in spin symmetry restoration can create a soft bound on
the energy convergence. This means that an appropriate
integration grid can be determined based on the SCF
convergence criteria. We have also presented a novel way to
incrementally build rotated Fock matrices in PHF using
densities differences between two different SCF iterations and
between two grid points. This scheme shows significant
improvements in integral screening over just using the density
difference between two SCF iterations. These improvements
should make it possible to study more complex molecular
systems with spin-projected GHF.

■ APPENDIX

This section provides explicit expressions for all terms
presented in Figure 1 and walks through each step of the
algorithm in detail. This implementation of projected Hartree−
Fock requires using matrices in the atomic orbital (AO),
orthonormal atomic orbital (OAO), and the natural orbital
(NO) bases. Matrices in the OAO basis are denoted with a
prime, and those in the NO basis have a tilde to differentiate
them from AO basis matrices.
The first step is to combine the grid weights at each

integration point with the Wigner D-matrix elements for all
necessary spin-projections m and k

α β γ α β γ α β γ= *x G D( , , ) ( , , ) ( , , )mk mk
S

(24)

where G(α, β, γ) is the weight at a particular grid point. In the
following discussion each grid point will be denoted by g = (α,
β, γ). These quantities can be formed once and used
throughout the SCF procedure.
The broken symmetry density must be transformed to the

NO basis. The AO density matrix is first transformed to the
OAO basis using the transformation matrix T.

ρ =στ σ τ†C Cocc occ (25)

ρ
ρ ρ

ρ ρ
=

αα αβ

βα ββ

⎛
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⎞
⎠
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(26)

ρ
ρ ρ

ρ ρ
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αα αβ

βα ββ
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⎛
⎝⎜
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⎠⎟

T 0

0 T

T 0
0 T

(27)

The OAO density matrix is then diagonalized, and the NO
transformation matrix O (formed from the eigenvectors from
diagonalizing the OAO density) is used during the current SCF
iteration.

ρ ρ

ρ ρ

ρ ρ

̃ = ′

=
̃ ̃

̃ ̃
=

†

⎜ ⎟
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝

⎞
⎠

O O

1 0
0 0

(28)

(29)
oo ov

vo vv

Note that in the AO and OAO bases the density matrix is spin
blocked, but in the NO basis it has occupied and virtual blocks.
At this point, we start the loop over all grid points g. The

rotation matrix is constructed from three separate matrices
defined by each rotation angle. This is trivially done in the
OAO basis and then transformed to the NO basis.

α β γ′ = ′ ̂ ′ ̂ ′ ̂S S SR R R R( , ) ( , ) ( , )g z y z (30)

α′ ̂ =
α

α−

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟SR

1 0

0 1
( , )

e

e
z

i

i

/2

/2 (31)
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(32)

̃ = ′†R O R Og g (33)

The overlap between the broken symmetry determinant and
the rotated determinant can now be evaluated using the
rotation matrix and the NO density. This can then be used to
renormalize the grid weights determined above.
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ρ= ̃ ̃w g x g N( ) ( )/det( )mk mk g oo (35)

The rotated density matrix in the NO basis can now be
constructed.
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The rotated density matrix is then used to construct the
rotated Fock matrix. This is formed in the AO basis and then
transformed back to the NO basis.

ρ ρ′ = ̃ †O Og g (37)
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̃ = ′†G O G Og g (41)
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̃ = ̃ + ̃F h Gg g (42)

We now have all the necessary quantities to build the CI
matrix elements by looping over the different spin projections
m, k. Note that this step is not necessary for singlet states since
the spin projection is always 0. We can update Wmk, Hmk, mk ,
and mk for the current grid point.

+=W w g( )mk mk (43)
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2
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The CI problem can now be solved to obtain the linear
coefficients and energy. These can then be contracted with mk
and mk to finish forming the effective Fock matrix

= EHf Wf S (49)

∑̃ = * ̃ − ̃ f f E( )
mk

m k mk
S

mk
(50)

The occupied−occupied and virtual−virtual blocks of the
effective Fock matrix are always 0, and at convergence the off-
diagonal blocks vanish as well due to the Brillouin condition
(eq 11). To ensure smooth convergence and separation of the
occupied and virtual spaces, the diagonal blocks of the effective
Fock matrix can be modified to use the blocks of the broken
symmetry Fock matrix. The choice was proposed by Scuseria
and co-workers and has proven to be effective in practice.
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(51)

The effective Fock matrix can then be transformed to the
OAO basis, diagonalized, and convergence evaluated. If the
system has not converged, we return to the step where the
broken symmetry density is transformed to the NO basis and
proceed through the other steps until convergence is reached.
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