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ABSTRACT
Spin-containing materials are important for spintronic applications. In this work, we present a computational framework to embed nonrela-
tivistic, two-component calculations in a one-component environment. In this framework, both embedding scalar potential and magnetic
field can be included to describe the interaction between quantum subsystems. In this current development, a generalized Kohn-Sham
density functional theory electronic structure is embedded in unrestricted Kohn-Sham density functional theory. Two test systems are stud-
ied: a Li3 on a closed-shell He lattice and a Li3 on a He lattice containing a Li atom defect. The noncollinearity of Li3 is unaffected upon
embedding in a closed-shell environment through the scalar potential embedding. However, the open-shell nature of the Li atom defect
introduces an effective magnetic field that couples to the magnetic components of the generalized Kohn-Sham Hamiltonian. These results
show that noncollinear quantum embedding in an open-shell collinear environment may modify the spin structure of the embedded sys-
tem. The formalism developed herein may serve as a useful tool in the modeling of inhomogeneous magnetic fields in two-component
calculations.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5092628

I. INTRODUCTION

Spin-containing materials have picked up interest due to their
relevance for spintronic applications.1 For magnetic and spin phe-
nomena, noncollinear electronic structure theory is the natural
choice on account of spin-symmetry breaking terms in the Hamilto-
nian (spin-orbit and external magnetic fields).2 Due to the number
and types of atoms in these materials, a computational prescription
capable of treating noncollinear spin at a reasonable cost is needed.
For large molecular or material systems, one often has to make sig-
nificant compromises in accuracy by going to a less computationally
expensive method. This has opened the door for quantum embed-
ding schemes to find use, where a system is separated into quantum
subsystems that can be treated at different levels of theory. Until
a single electronic structure method is capable of such a daunting
task, quantum embedding provides a pragmatic alternative in the
meantime.

Quantum embedding is a useful tool when one wishes to study
local phenomena of an extended system. The total system is sepa-
rated into subsystems, where different electronic structure methods
can be used for the subsystems. For the purposes of this article,
we will only consider two quantum subsystems: (A) the cluster,
where a more accurate electronic structure (high level of theory) is
desired, and (B) the environment, where a less accurate electronic
structure method (low level of theory) is suitable. However, the
embedding formalism is applicable to a general number of quantum
subsystems.

There are a number of quantum embedding approaches in the
literature. In this work, we focus on density-based embedding3–20

and use the density functional embedding theory.21,22 The cluster-
environment interaction is handled by the embedding perturba-
tions, which account for the environment in the cluster calculation
and vice versa, under the condition that the subsystem densities
from density functional embedding theory sum to the total density
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of the interacting system. Satisfying this condition is desirable for the
computation of density-dependent properties.

In this work, we introduce an approach for embedding non-
collinear two-component, nonrelativistic calculations in a collinear,
nonrelativistic environment within the density functional embed-
ding framework. Closed-shell subsystems will generate a scalar
embedding potential, whereas spin-polarized open-shell systems
can give rise to a scalar potential and an effective magnetic field.
There have been successful developments that embed two- or four-
component relativistic methods, focusing only on the scalar poten-
tial embedding scheme.23–27 In this paper, we generalized the two-
component noncollinear embedding scheme to both open- and
closed-shell cases within a spin-separated embedding scheme that
can handle both the scalar embedding potential and the effective
magnetic field generated from the environment.

II. METHODOLOGY
Atomic units are used throughout. In the following discussion,

we use tilde notations, e.g., ρ̃ and m̃, for quantities computed at
low levels, and primed notations, e.g., V′ and F′, for perturbing
potentials or perturbed Hamiltonians.

A. Embedding potential and embedding
magnetic field

Embedding calculations for nonspin-polarized systems using
density functional embedding theory were discussed in detail in
Ref. 21. Here, we briefly review density functional embedding theory
for collinear spin-polarized systems.

The Kohn-Sham (KS) energies of the cluster and environment
are

Eclu[ρ̃clu, m̃clu]

= −∑
σ,j

f clu
σ,j ∫ d3r φclu

σ,j (r)
∇2

2
φclu
σ,j (r) + J[ρ̃clu]

+∫ d3r vclu
ext(r)ρ̃clu(r) + Exc[ρ̃clu, m̃clu]

+∫ d3r ρ̃clu(r)V′(r) + µB∫ d3r m̃clu(r) ⋅ B′(r) − TSclu, (1)

Eenv[ρ̃env, m̃env]

= −∑
σ,j

f env
σ,j ∫ d3r φenv

σ,j (r)
∇2

2
φenv
σ,j (r) + J[ρ̃env]

+∫ d3r venv
ext (r)ρ̃env(r) + Exc[ρ̃env, m̃env]

+∫ d3r ρ̃env(r)V′(r) + µB ∫ d3r m̃env(r) ⋅ B′(r) − TSenv,

(2)

where φclu
σ,j and φenv

σ,j are the jth KS orbital of the cluster and envi-
ronment for the spin index σ, respectively. The cluster and envi-
ronment’s ionic potentials are vclu

ext(r) = ∑j vext,j(r) and venv
ext (r)

= ∑k vext,k(r), respectively, where vext,j(r) is the ionic potential of
atom j with indices j and k running over the atoms in the cluster
and environment, respectively. ρ̃clu (ρ̃env) and m̃clu (m̃env) are the

charge density and the magnetization density vector, respectively, of
the cluster (environment). {f σ ,j} are the occupation numbers and are
assigned according to the Fermi-Dirac statistics with the smearing
temperature T. µB is the Bohr magneton. Sclu and Senv are the elec-
tronic entropies, for the cluster and environment, respectively, e.g.,
for cluster Sclu = −kB∑σ,j( f clu

σ,j ln f clu
σ,j + (1 − f clu

σ,j ) ln(1 − f clu
σ,j )). J[ρ̃clu]

and J[ρ̃env] are the Hartree energies of the cluster and environment,
respectively.

The cluster and environment share a common embedding
potential [V′(r)] and embedding magnetic field [B′(r)] in density
functional embedding theory.9,21 Embedding potential and embed-
ding magnetic field V′ and B′ “glue” the cluster and environment
together such that ρ̃clu(r) + ρ̃env(r) = ρ̃T(r) and m̃clu(r) + m̃env(r)
= m̃T(r). ρ̃T and m̃T are the total charge density and magnetization
density vector, respectively. After partitioning the system’s electron
density, the system’s energy E is formally partitioned as

E[ρ̃T , m̃T] = Eclu[ρ̃clu, m̃clu] + Eenv[ρ̃env, m̃env]
+Eint[ρ̃clu, m̃clu, ρ̃env, m̃env]. (3)

Eint is the cluster-environment interaction energy and is formally
defined as Eint = E − Eclu − Eenv. For fixed ρ̃T and m̃T , Eint is, there-
fore, a functional of ρ̃clu and m̃clu. The embedding potential and
embedding magnetic field that the environment exerts on the cluster
are formally defined as

V′(r) = δEint

δρ̃clu(r)
, (4)

B′(r) = δEint

δm̃clu(r)
. (5)

In this work, V′(r) and B′(r) are obtained via a Wu-Yang
optimized effective potential (OEP) method21,28

W[V′,B′] = Eclu[V′,B′] + Eenv[V′,B′] − ∫ V′(r)ρ̃T(r)d3r

−µB ∫ B′(r) ⋅ m̃T(r)d3r. (6)

For trial V′ and B′, the KS systems defined in Eqs. (1) and (2) are
solved. The cluster and environment’s electron and magnetization
densities are then used to compute W. Thus, W is a functional of V′

and B′.
In a one-component density functional embedding framework,

quantities obtained from the Wu-Yang OEP approach are spin-up
and spin-down embedding potentials, V↑ and V↓, up to some con-
stants, λ↑ and λ↓.22 In one-component electronic structure methods,
due to spin collinearity, only one of the magnetization densities can
be nonzero,29,30 which is conveniently chosen to be the z-component
of the magnetization density vector. A simple mathematical proce-
dure using the Pauli spin matrices [Eq. (7)]

σ0 = (1 0
0 1

), σ1 = (0 1
1 0

), σ2 = (0 −i
i 0

), σ3 = (1 0
0 −1

)

(7)

leads to the following relationship:
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V′(r) = 1
2
(V↑(r) + λ↑ + V↓(r) + λ↓), (8)

B′z(r) =
1

2µB
(V↑(r) + λ↑ − V↓(r) − λ↓), (9)

which are used to compute the embedding potential and embed-
ding magnetic field. Note that the z-component of the magnetiza-
tion density vector is also defined as the σ3 component of the Pauli
matrix. The solutions of two-component Kohn-Sham density func-
tional theory (KS-DFT) depend on λ↑ − λ↓ in B′z(r). λ↑ − λ↓ is deter-
mined based on the condition that the Fermi levels of the spin-up
and spin-down electrons are equal in the embedded cluster.

B. Embedding two-component noncollinear
electronic structure

In this work, Eclu and Eenv are solved in the collinear case
(the low-level theory), and the noncollinear embedded cluster cal-
culations are considered as the high-level calculations. In this sec-
tion, we discuss a strategy to introduce the embedding potential
V′ and embedding magnetic field B′ to the noncollinear high-level
calculations.

We choose to use single-reference, nonrelativistic two-
component (2c) calculations to model noncollinear electronic struc-
ture in this work. The working equations below are equally applica-
ble to Hartree-Fock (HF) and Kohn-Sham density functional theory
(KS-DFT), where we consider a general Fock operator. Note that
2c versions of nonrelativistic HF and KS-DFT are often referred
to as generalized variants in the literature.31–40 We will adopt this
nomenclature and refer to 2c KS-DFT as generalized KS-DFT
(GKS).

In a 2c formalism, one works in a basis of one-electron spinors

φp(x) =
⎛
⎝
φα
p(r)

φ
β
p(r)

⎞
⎠

, (10)

φσ
p(r) =∑

µ
cσpµχµ(r), σ ∈ {α,β}, (11)

where x is the electronic spatial and spin coordinate, r is a spatial
coordinate, cσpµ is a molecular orbital (MO) coefficient, and χµ is an
atom-centered basis function. Electronic structure methods based
on the spinor basis allow for spin rotations and noncollinear spin
arrangements.

The spin-blocked 2c working equation in an atomic orbital
basis is2

⎡⎢⎢⎢⎢⎣

Fαα Fαβ

Fβα Fββ

⎤⎥⎥⎥⎥⎦
[
cα

cβ
] = [

S 0
0 S

][
cα

cβ
]�, (12)

where Fστ is the spin-blocked Fock matrix, S is the overlap
matrix, and � are the eigenvalues. The density matrix (P with Pστ

µν
= ∑occ

j cσµjcτ∗νj ) also has a spin-blocked form.
We can cast the rank-2 spin-blocked F and P matrices in the

Pauli matrix basis,30

F =
3

∑
n=0

Fn ⊗ σn, (13)

P =
3

∑
n=0

Pn ⊗ σn, (14)

where the scalar (F0) and spin parts (F1, F2, F3) of the Fock matrix
are defined as30

F0 = h0 + J[P0] − ζK[P0] + Vxc[P0], (15)

Fn = hn − ζK[Pn] + Vxc[Pn], n = 1, 2, 3, (16)

where h is the core Hamiltonian, J and K are the Coulomb and
exchange matrices, respectively, ζ is the coefficient of the exact
exchange in hybrid density functional theory, and Vxc is the torque-
free noncollinear density functional kernel. In the case of HF, Vxc = 0
and ζ = 1. For details regarding the implementation of noncollinear
density functional theory, we refer the readers to Ref. 30. Note that in
restricted collinear formalisms, only the scalar part σ0 is nonzero and
in unrestricted collinear formalisms the scalar σ0 and magnetization
σ3 terms are nonzero.

With the Pauli-spin-separated form of the generalized Fock
matrix [Eq. (13)], the embedding potential V′ and embedding mag-
netic field B′ can be introduced as perturbations. The embedded
Fock matrix F′ for the high-level subsystem is

F′ = (F0 + V′)⊗ σ0 +∑
n
(Fn + µBB′n)⊗ σn, (17)

V′

µν = ∫ χµ(r)V′(r)χ∗ν(r)dr, (18)

B′n,µν = ∫ χµ(r)B′n(r)χ∗ν(r)dr, (19)

where V′ is the embedding potential and B′n is the embedding
magnetic field polarized along the n direction. In this article, we
will assume the spin-Zeeman contribution from the interaction
energy is dominant and ignore other effects due to the embedding
magnetic field (e.g., orbital Zeeman and diamagnetic terms).41,40

Since the low level is treated in a collinear framework in which
spin orientation is arbitrary, one first needs to define a proper
spin-frame. In this work, we choose to align the collinear spin
orientation in the low-level calculation with the P3 component
of the noncollinear high level subsystem. This treatment gives
rise to a spin-Zeeman term acting on the high-level quantum
subsystem.42,43,29

C. Representation transformation of embedding
potential and embedding magnetic field

In this work, the embedding potential and embedding mag-
netic field are resolved from periodic plane-wave calculations and
represented in real-space which is suitable for describing delocal-
ized systems. However, the wave function of the high-level subsys-
tem is expanded in an atom-centered basis set which is ideal for
localized properties. Due to nonuniformity, evaluations of Eqs. (18)
and (19) require a numerical integration over basis functions that
expand the wave function of the high-level subsystem. A transfor-
mation of representation is needed to map the embedding poten-
tial and embedding magnetic field generated in real-space onto the
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numerical grid used for atom-center basis functions. In the current
implementation, the grid points of each atoms in the high-level sub-
system are arranged in Lebedev spheres of several Euler-Maclaurin
radii. We use a linear interpolation scheme to map the numeri-
cal values of embedding potential and embedding magnetic field at
Euler-Maclaurin-Lebedev grid points.

III. RESULTS AND DISCUSSION
We consider two test systems: noncollinear Li3 interacting

with (1) a closed-shell periodic He atom lattice and (2) a periodic
He atom lattice with a Li atom defect. The first system describes
embedding subsystems that are coupled through a scalar embedding
potential, whereas an additional magnetic coupling field is intro-
duced in the second model system. We chose He atoms due to their
closed-shell electronic structure, and the Li atom was chosen as a
model open-shell environment due to its single unpaired electron.
Li3 was selected due to its 2-component instability, which exhibits
a noncollinear electronic structure where net magnetization is zero
(Fig. 1).2,38,39

The “low-level” of theory used in this work is unre-
stricted collinear KS-DFT with the Perdew-Burke-Ernzerhof (PBE)
exchange-correlation functional.44 The unrestricted PBE calcula-
tions on the total system were performed with the ABINIT45 soft-
ware package. To avoid producing embedding perturbations that are
reflective of the inadequate treatment of Li3 with a collinear refer-
ence, we replaced Li3 with Be3 in the calculations that generate the
embedding potential and embedding magnetic field. The Be3 geom-
etry is an equilateral triangle with bond lengths of 4 Å and placed 3
Å above a lattice of He atoms with a 2 Å spacing. In the case of the
Li-atom defect in the periodic He lattice, we replaced the He atom at
the center of the unit cell with a Li atom. The unit cell was 14 Å, 14 Å,
and 15 Å in x, y, and z, respectively, where the trimer and lattice were
placed in the xy plane. We used a 600 eV kinetic energy cutoff for
the plane-wave one-particle basis and norm-conserving pseudopo-
tentials were generated with the fhi98pp46 program. KS orbitals are
occupied following the Fermi-Dirac statistics with a smearing tem-
perature of 10−6 eV. Subsystem and embedding potential calcula-
tions were performed with a locally modified version of the software
presented in Ref. 21. Upon maximization of Eq. (6), we obtained
embedding perturbations on a uniform grid in position space. The
VESTA (visualization for electronic and structural analysis) software
was used to generate plots.47

The “high-level” calculation is complex two-component
PBE048 (2c-PBE0 or C-GPBE0), a hybrid density functional, with
a cc-pVDZ basis set.49 The embedding scheme introduced in this

FIG. 1. Depiction of stable C-GPBE0 solution of Li3 with no embedding perturba-
tions: (left) top view and (right) 3D view. Li nuclei are in blue, and magnetization
vectors are denoted by red arrows.

FIG. 2. (Left) Charge density of Be3 on a He lattice computed with unrestricted
PBE. (Right) Embedding potential for Be3 interacting with the He lattice. Be atoms
are in green, He atoms are in silver, turquoise denotes negative values, and yellow
denotes positive values. Isosurface values of 0.001 a.u. and 0.026 a.u. were used
for the charge density and embedding potential, respectively.

work allows for practical applications with hybrid functionals with-
out incurring increased cost compared to working in the plane wave
basis. Note the “high-level” label designation is in reference to the
noncollinearity as opposed to the quality of one- orN-electron bases.
The Li3 geometry used in this work is that of an equilateral tri-
angle with bond lengths of 4 Å. A stable solution for gas-phase
Li3 was obtained using the development version of Gaussian50 with
stability checks and optimizations of complex 2-component wave
functions.38,51 We used real basis functions and complex MO coeffi-
cients. Embedded Li3 calculations were performed in a locally mod-
ified version of Chronus Quantum52 using the stable solution from
Gaussian.

A. Embedding via scalar potential
Figure 1 shows the magnetization vectors of the stable

C-GPBE0 solution for a Li3. Because such a noncollinear solu-
tion cannot be obtained using collinear electronic structure meth-
ods, the embedding perturbations were computed using Be3 instead
of Li3 to avoid unphysical spin polarizations arising from spin
collinear calculations of Li3. The charge density and resulting
embedding potential of Be3 interacting with the He atom lat-
tice are shown in Fig. 2. The embedding magnetic field is zero
due to the closed-shell nature of the subsystems. The attrac-
tive region of the embedding potential is around the Be atoms,
reflecting how the density is pulled down toward the He lattice
upon interaction, and the repulsive region near the He lattice sur-
face prevents the Be3 density from getting too close to the He
atoms.

Upon embedding the C-GPBE0 Li3 solution (Fig. 1) using
the Be3/He embedding potential, the magnetization density is
unchanged, resulting in the similar solution depicted in Fig. 1.
Although the embedding potential only enters the scalar part of the
two-component Hamiltonian in Eq. (17), it can indirectly modify
the magnetic moments by altering the electron density distribution.
In this weak interaction scenario, embedding a noncollinear system

FIG. 3. Magnetization density of the He lattice with a Li atom defect computed with
unrestricted PBE. Li atom is purple, and He atoms are silver. An isosurface value
of 0.001 a.u. was used.
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FIG. 4. (Left) Charge density of Be3/HeLi computed with unrestricted PBE.
(Right) Embedding magnetic field for Be3/HeLi. Be atoms are in green, He
atoms are in silver, Li atom is purple, turquoise denotes negative values, and
yellow denotes positive values. Isosurface values of 0.001 a.u. and 0.072
a.u. were used for the charge density and embedding magnetic field, respec-
tively.

in a closed-shell environment leaves the overall spin structure of the
embedded system nearly unaffected.

B. Embedding via scalar potential
and magnetic field

To model the effect of an embedding magnetic field, a Li
defect is introduced to the He lattice. The magnetization density
at the low level is nonzero as shown in Fig. 3, which gives rise
to a nonzero embedding magnetic field. The charge density of the
total Be3/HeLi system and the resulting embedding magnetic field
are shown in Fig. 4. In the nonrelativistic and one-component
electronic structure framework, the spin orientation is not a well-
defined quantity in real-space. As a result, the embedding mag-
netic field must be prealigned with respect to the magnetization
axes in the two-component framework. In other words, the spin
frames of low-level and high-level subsystems must be aligned. In
this work, we make the choice to align the embedding magnetic
field with the P3 component of the magnetization vector for Li3.
As noted in Sec. II B, this alignment gives rise to the spin-Zeeman
effect along the z-axis defined perpendicular to the plane of the He
lattice.

The effect of the embedding potential and magnetic field on
noncollinear Li3 is depicted in Fig. 5. Due to the embedding mag-
netic field, the Li3 is now collinear where the magnetization vectors
have aligned along the embedding magnetic field (the P3 compo-
nent is defined along the z axis). Although the two subsystems are
3 Å apart, the embedding magnetic field is strong enough to align
spins in Li3, resulting in a quartet collinear configuration for the
high-level subsystem. This indicates that our embedding formal-
ism may be useful in modeling spin-phase transitions in different
environments.40

FIG. 5. Depiction of C-GPBE0 solution of Li3 embedded with the Be3/HeLi
embedding potential and embedding magnetic field: (left) side view and (right)
3D view. Li nuclei are in blue, and magnetization vectors are denoted by red
arrows.

IV. CONCLUSION
In this work, we have developed a framework for performing

single-reference two-component quantum embedding with a non-
relativistic Hamiltonian. The two-component electronic structure
is formulated in the Pauli matrix basis which separates spin and
scalar components. In this formalism, embedding scalar potential
and magnetic field can be introduced to couple different quantum
subsystems.

We investigated the effects of scalar potential embedding and
magnetic field embedding on the noncollinear spin characteristics of
a Li3 system. When the environment introduces only a scalar embed-
ding potential (e.g., a closed-shell subsystem), the noncollinearity
of Li3 was unaffected. When a magnetic defect introduces an addi-
tional embedding magnetic field, it can alter the spin structure of the
high-level system.

The result from this two-component embedding scheme is
important to consider when one wishes to embed a noncollinear
spin system in an environment and to study how magnetic envi-
ronment affects the electronic characteristics of a molecular system.
Because the relativistic two-component Hamiltonian has a similar
matrix structure, this work marks an important first step toward
two-component relativistic quantum embedding.

In this work, we assume that all spin noncollinearity resides
within the high-level subsystem. The embedding method introduced
here will be inadequate when there is a significant noncollinear spin
transfer from the high-level to the environment. In addition, using
a closed-shell model system, e.g., Be3, in the computation of embed-
ding perturbations has an advantage of removing unphysical spin
polarization due to the spin collinear constraint in low-level calcula-
tions, but it also ignores the mutual spin polarization of subsystems.
A future development will consider the construction of a full vec-
tor form of the embedding magnetic field, which may be capable of
tackling such challenging problems.
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