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ABSTRACT: In this work, we present a framework of an ab initio
variational approach to effectively explore electronic spin phase
transitions in molecular systems inside of a homogeneous magnetic
field. In order to capture this phenomenon, the complex generalized
Hartree−Fock ( ‐ GHF) method is used in the spinor formalism with
London orbitals. Recursive algorithms for computing the one- and
two-electron integrals of London orbitals are also provided. A Pauli
matrix representation of the ‐ GHF method is introduced to separate
spin contributions from the scalar part of the Fock matrix. Next, spin
phase transitions in two different molecular systems are investigated
in the presence of a strong magnetic field. Noncollinear spin
configurations are observed during the spin phase transitions in H2
and a dichromium complex, [(H3N)4Cr(OH)2Cr(NH3)4]

4+, with an increase in magnetic field strength. The competing driving
forces of exchange coupling and the spin Zeeman effect have been shown to govern the spin phase transition and its transition
rate. Additionally, the energetic contributions of the spin Zeeman, orbital Zeeman, and diamagnetic terms to the potential
energy surface are also analyzed.

1. INTRODUCTION

Electron spin is a fundamental physical property that is
important to a wide array of science and technological
applications such as energy storage, quantum computing, and
chemical catalysis. An atomic or molecular system has a spin-
dependent many-electron response that can be perturbed by an
external electromagnetic field. Although effective model
Hamiltonians with perturbative treatments of external fields1−4

have their merits, they are limited in their description of spin-
dependent processes in the strong perturbation limit. While
molecular response to external electric fields has been a subject
of extensive theoretical work, computational frameworks for
modeling finite magnetic field effects have been lagging behind
mainly due to three challenges; the gauge-origin problem, spin
noncollinearity, and the necessity of complex arithmetic.
For many-atom systems, electronic structure calculations in

the presence of electromagnetic fields become dependent on the
choice of the gauge-origin, mainly due to the basis set
incompleteness of Gaussian-type orbitals.5−12 Among various
approaches to correct for the gauge-origin problem, electronic
structure methods using London-type orbitals13,14 provide the
most satisfactory solution.15−21 London orbitals are constructed
from conventional atomic orbitals (AOs) dressed by a complex
phase factor that depends on the external vector potential and
are considered physically appropriate for modeling chemical
systems in an external magnetic field.5

In the nonperturbative limit, such as in the presence of a
strong magnetic field, variational treatment of the electronic
structure using London orbitals is required.22−24 For this

purpose, Helgaker and co-workers have made algorithmic
advances for evaluating one- and two-electron integrals using
London orbitals and applied a variational approach to study
molecules in strong magnetic fields within the spin-collinear
framework at the level of Hartree−Fock,25,26 coupled cluster,27

configuration interaction,28 density functional theory, and
current density functional theory.29−31 While the electronic
characteristics of spin states in a magnetic field can be obtained
using a variational spin-collinear method, the spin phase
transition process, e.g., from singlet to triplet, driven by a static
magnetic field requires a spin-noncollinear treatment.
It is well-known that certain symmetry breaking, such as an

external static magnetic field breaking time reversal symmetry
and geometric frustration breaking continuous translation
symmetry, will cause noncollinear spin configurations to
arise.32−36 Thus, a proper description of spin processes must
come from a solution of the first-principles spin-dependent
Hamiltonian that allows variational treatment of noncollinear
spin. The generalized Hartree−Fock (GHF) method removes
the spin-collinear constraint from conventional restricted and
unrestricted Hartree−Fock (RHF and UHF) methods so that
spins are allowed to rotate freely in a noncollinear framework. A
detailed history of the early GHFmethod can be found in ref 37,
and we refer readers to a recent review36 on noncollinear spin.
The GHF approach has been shown to be a convenient and
inexpensive computational platform to simulate spin dynamics
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of a single spin center in a static magnetic field38 and in a
dissociated reaction.39

In this work, we introduce a variational spin noncollinear
approach using the complex GHF ( ‐ GHF) method with
London orbitals in the presence of a strong magnetic field. The
method implemented herein is able to model both spin-collinear
and noncollinear phenomena as well as the processes underlying
the magnetic field-induced spin phase transition. Note that
during the preparation of this manuscript a variational GHF
approach was applied to studies of orbital and spin effects in
molecules subject to nonuniform magnetic fields.40

2. METHODOLOGY
2.1. Spinor Formalism of Generalized Hartree−Fock

with LondonOrbitals. In order to treat noncollinear spins in a
nonperturbative magnetic field, one needs to retain the full
vector form of the magnetization m(r) and allow each spin
quantization axis to rotate. This is equivalent to writing the spin
orbitals as a superposition of the spin-up and spin-down
manifolds. For Hartree−Fock, this leads to the GHF
method,32,34,36−38,41−43 which is similar in structure to the
wave function used in two-component relativistic models.44−53

The spinor orbital is defined as

ψ
ϕ

ϕ
=

α

β

i
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jjjjjjjjj
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{

zzzzzzzzz
r

r

r
( )

( )

( )
j

j
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The spatial functions {ϕj
α(r,kA)}, {ϕj

β(r,kA)} are expanded in
terms of a common set of complex London orbitals {χ̃μ(r,kA)}

∑ϕ χ= ̃α

μ
μ
α

μCr k r k( , ) ( , )j jA A
(2)

∑ϕ χ= ̃β

μ
μ
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μCr k r k( , ) ( , )j jA A
(3)

χ χ̃ = −μ μ
· −r k r R( , ) ( )e k r R

A A
i ( )A A

(4)

where {χμ(r − RA)} are real AO basis functions centered at RA.
The exponential form of the London orbital phase factor defines
the local gauge-origin at each nuclear center in the presence of a
magnetic field with a plane wave vector described by

= ×k R B
A 2

A , where B is the external magnetic field.

In the spinor orbital basis defined in eq 1, the Fock matrix (F)
and the density matrix (P with Pμν

σσ′ =∑j
occ Cμj

σCνj
σ′*) have a spin-

blocked form,38 shown in eq 5
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In the current implementation, we cast the rank-2 spin-blocked
F and P matrices in the Pauli matrix basis53
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where the scalar (F0) and spin part (F1,F2,F3) of Fock matrix are
defined as53

= + [ ] − [ ]F h J P K P0 0 0 0 (8)

= − [ ] =nF h K P 1, 2, 3n n n (9)

The Coulomb (J) and exchange (K) matrices are,

∑ μν κλ[ ] = |μν
λκ

λκJ PP ( )0 0,
(10)

∑ μλ κν[ ] = | =μν
λκ

λκK P nP ( ) 0, 1, 2, 3n n,
(11)

where
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are the electron repulsion integrals (ERIs). Note that because
ERIs using London orbitals are complex valued they only have a
four-fold symmetry instead of eight, as in the case of real-valued
ERIs

μν κλ κλ μν νμ λκ λκ νμ| = | = | * = | *( ) ( ) ( ) ( ) (13)

2.2. Nonrelativistic Hamiltonian in the Presence of a
Static and Uniform Magnetic Field. In the nonrelativistic
framework, the interaction of an electron spin with external
electromagnetic field is described by the Schrödinger-Pauli
Hamiltonian:

σ̂ = [ · + ] − ̂h Up A
1
2

( )
Pauli 2

(14)

whereA and Û are the vector potential and scalar potential of the
electromagnetic field, respectively. p = −i∇ is the momentum
operator. Given the relationship between the vector potential
and the magnetic field, = ×A B r1

2
, the one-electron Pauli

Hamiltonian can be written as

σ= ̂ + − × ∇ · + ×h h r r B B r( )
1
2

( i )
1
8

( )Pauli
0

2
(15)

where ĥ0(r) is the field-free one-electron Hamiltonian. The
second term includes spin and orbital Zeeman contributions.
The third term is the diamagnetic contribution and is quadratic
in the strength of the magnetic field, which can be expanded as

× = + + +

+ + − − −

B B x B B y

B B z B B xy B B yz B B xz

B r( ) ( ) ( )

( ) 2 2 2

y z x z

x y x y y z x z

2 2 2 2 2 2 2

2 2 2

(16)

The orbital Zeeman and the diamagnetic term do not directly
contribute to the spin dynamics.38 Although these two terms are
relatively small, they are important contributions in diamagnet-
ism.54−57 In the presence of a strong magnetic field, these two
terms account for significant contributions to the interaction
between the chemical system and the external field.26

Using the formalism of generalized Hartree−Fock in the Pauli
matrix basis (eq 6), spin contributions in eq 14 can be separated
from the scalar part. The resulting scalar Fock matrix is
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where Lμν = ⟨χ̃μ|r × ∇|χ̃ν⟩ is the orbital-angular momentum
integral and (qnm)μν = ⟨χ̃μ|rn̂rm̂|χ̃ν⟩ is the electric quadrupole
integral. After spin separation using the Pauli matrices, spin
components of the Fock matrix are

= − [ ] =B nF S K P
1
2

1, 2, 3n n n (18)

where S is the overlap matrix.
2.3. Electron Integrals Using London-Type Orbitals.

The electronic structure method introduced in this work
requires the computation of one- and two-electron integrals of
London orbitals. Integrals are evaluated in complex arithmetic,
and the corresponding recursion relationships are presented in
the Appendix. In the current work, one- and two-electron
integrals of London orbitals and the complex generalized
Hartree−Fock method are implemented in the Chronus
Quantum software package.58

3. RESULTS AND DISCUSSION
The formalism of GHF in the spinor basis allows for calculations
of noncollinear spin states within the ab initio framework. With
the atomic London orbitals and associated one- and two-
electron integrals, wave functions of chemical systems with
multispin centers in the presence of a static magnetic field can be
variationally optimized. In this current work, we study the spin
noncollinearity and magnetic phase transition of molecular
systems driven by static magnetic fields. All ‐ GHF calculations
are done using the Chronus Quantum software package.
The first test case is a H2 molecule in a uniformmagnetic field.

‐ GHF solutions in the presence of a static magnetic field were
obtained with several different basis sets, including 6-31G, 6-
31G(d,p), aug-cc-pVDZ, and aug-cc-pVTZ. Although differ-
ences in the absolute energy computed with different basis sets
are noticeable, the expectation values of Sz at a given magnetic
field only differ by less than 3%. In the following discussion, we
will only present the results computed at the ‐ GHF/aug-cc-
pVTZ level of theory.59 In this test system, the static magnetic
field (1 au ≈ 2.35 × 105 T, based on SI units for the magnetic
field) is aligned perpendicular to the molecular bond axis. Figure
1 plots the potential energy curve of a H2 molecule in a uniform
magnetic field (|Bz| = 0.001 au along the−z direction) computed
using the complex generalized Hartree−Fock ( ‐ GHF),
complex unrestricted Hartree−Fock ( ‐ UHF), and complex
restricted Hartree−Fock ( ‐ RHF) with London orbitals.

‐ UHF and ‐ RHF calculations are restricted to spin triplet
(Sz = 1) and singlet (Sz = 0) states, respectively. The ‐ GHF
solution is not spin-restricted. As a result, at all bond distances,
the ‐ GHF solution is always the lowest in energy.
From the equilibrium bond length toward the asymptotic

dissociation limit, the change in ⟨Sz⟩ of the ‐ GHF solution
suggests that the system undergoes a spin phase transition from
⟨Sz⟩ = 0 to 1. This spin phase transition is a result of the
competing driving forces of the exchange coupling and
paramagnetism. This can be understood from the perturbative
and phenomenological spin Hamiltonian including both the
spin exchange coupling and Zeeman effect

μ

θ μ

= − · − · +

= − | || | − +

H J g

J g B S S

S S B S S

S S

1
2

( ) (19)

1
2

cos( ) ( ) (20)z z z

12 1 2 B 1 2

12 1 2 B 1 2

where J12 is the exchange coupling strength, g is the spin g-factor,
and μB is the Bohr magneton. For noncollinear spin alignment in
the presence of a static magnetic field in the z direction depicted
in Figure 2, the spin Hamiltonian can be written as in eq 20, with

the angle between the two spin vectors defined as θ. In the
collinear spin electronic structure framework, such as RHF and
UHF, θ can only be 0 or 180°. Without spin−orbit coupling, the
exchange coupling is isotropic.
At the equilibrium bond distance, the exchange coupling is

much stronger than the Zeeman term, giving rise to the
antiparallel orientation of the two electrons, i.e., a closed-shell
configuration and θ = 180°. As the bond length increases, the
exchange coupling decreases exponentially, whereas the strength
of the Zeeman effect remains constant. At certain bond lengths
when the exchange coupling becomes weaker than the Zeeman
term, the electronic system undergoes a spin phase transition.
This spin phase transition is a noncollinear process where θ can
take on any value between 0 and 180°, and the noncollinear spin

Figure 1. (a) Potential energy surface of a H2 molecule in a
homogeneous magnetic field, |Bz| = 0.001 au along the −z direction.
(b) Expectation value of Sz for the ‐ GHF solution.

Figure 2. Illustration of noncollinearity of two spin vectors.
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state has the lowest energy. In this regime, only the noncollinear
‐ GHF can describe the electronic characteristics of the spin

system.
Figure 3 shows the progression of spin vectors during the spin

phase transition when the bond length is stretched from 2.6 to

3.1 Å while keeping the magnetic field strength constant, |Bz| =
0.001 au, along the −z direction. When a nonzero ⟨Sz⟩moment
is obtained in the system, the overall spin vector is aligned
opposite to the magnetic field arising from the spin Zeeman
effect. As the spins undergo a phase transition, the angle between
local spin vectors decreases from 180 to 0°. At RHH ≈ 2.9 Å
(Figure 3b), the two local spin vectors are nearly orthogonal,
exhibiting a strong noncollinearity in the presence of a magnetic
field. The UHF and RHF solutions are restricted by collinear
spin configuration and, therefore, cannot capture the pro-
gression of spin phase transition via the spin noncollinear
configuration.
The framework of ‐ GHF with London orbitals also allows

for a variational exploration of critical magnetic field strengths
that can induce a spin phase transition in molecular systems.
Figure 4 plots the spin magnetization vectors at different field
strengths while keeping the bond length fixed at 2.6 Å. As the
magnetic field gets stronger, the expectation value of Sz becomes
greater, and a noncollinear spin phase transition is observed. In
contrast to the phenomenon in Figure 3 where bond stretching
weakens the exchange coupling, the spin phase transition in
Figure 4 arises from the increasing strength of the spin Zeeman

effect due to the increase in magnetic field strength. At |Bz| =
0.005 au, the spin phase transition is already complete, and the
triplet spin-collinear configuration is the lowest-energy state.
Figure 5 plots the expectation value of Sz as a function of H−H

bond length and magnetic field strength. Figure 5 suggests that

the rate of the spin phase transition sensitively depends on the
strength of exchange coupling and spin Zeeman terms. At near
the equilibrium bond distance with the strongest magnetic field
(|Bz| = 0.3 au) considered here, the spin configuration switches
almost immediately. In the weak field or weak exchange coupling
regime, spins can be seen to undergo a much slower phase
transition compared to those in the strong field or strong
exchange coupling regime.

Figure 3. Spin magnetization vectors at different H−H bond lengths.
(a) RHH = 2.6 Å, ⟨Sz⟩ = 0.19428, (b) RHH = 2.9 Å, ⟨Sz⟩ = 0.48588, and
(c) RHH = 3.1 Å, ⟨Sz⟩ = 0.88685. For all cases, the magnetic field
strength is 0.001 au along the −z direction. The area enclosed by the
mesh has a charge density of >0.002. The size of the 3D box is 550
pm(W) × 300 pm(H) × 300 pm(D).

Figure 4. Spin magnetization vectors for H2 at different field strengths.
(a) |Bz| = 0.001 au, ⟨Sz⟩ = 0.19428, (b) |Bz| = 0.003 au, ⟨Sz⟩ = 0.59040,
and (c) |Bz| = 0.005 au, ⟨Sz⟩ = 1.0000. The H−H bond length is RHH =
2.6 Å. The area enclosed by the mesh has a charge density of >0.002.
The size of the 3D box is 550 pm(W) × 300 pm(H) × 300 pm(D).

Figure 5. ⟨Sz⟩ as a function of H−H bond length and magnetic field
strength.
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Although the orbital Zeeman and diamagnetic terms in eq 15
do not directly modify the spin interaction with the external
magnetic field, they are important contributions to the stability
of the molecular system in a magnetic field and can indirectly
influence spin dynamics through perturbation of the spatial
extent and energetics of molecular orbitals.28 Figure 6 shows the

magnitudes of spin Zeeman, orbital Zeeman, and diamagnetic
contributions to the total potential energy. In the strong
exchange couple regime (RHH ≈ 0.4−0.6 Å), the diamagnetic
term has the largest contribution, followed by the orbital
Zeeman term. These two terms are different in sign, with the
diamagnetic term destabilizing the system energy with respect to
the field-free molecular system. In this regime, the system takes
on a closed-shell configuration. As a result, the spin Zeeman
contribution is zero. As the system undergoes a spin phase
transition, the nonzero overall spin vector gives rise to an
increasing spin Zeeman contribution that significantly stabilizes
the molecular system. Analysis of Figure 6 suggests that in a
closed-shell configuration orbital Zeeman and diamagnetic
contributions are responsible for the interaction between the
electronic system and the external magnetic field. In an open-
shell system, the spin Zeeman is the dominant driving force
underlying the system−magnetic field interaction in the weak
field regime. As the field strength increases, the diamagnetic
term becomes non-negligible as it increases quadratically with
respect to the field.
In order to probe the spin phase transition in a more complex

magnetic molecular system, we study the spin characteristics of a
dichromium molecular complex, [(H3N)4Cr(OH)2Cr-
(NH3)4]

4+, in a uniform magnetic field. Figure 7 illustrates the
molecular structure and computational setup where the
magnetic field is applied in the +z direction, perpendicular to
the Cr−O−Cr−O plane. The molecular geometry was
optimized60 with the GAUSSIAN16 software package61 at the
B3LYP/6-31G level of theory.62−65 The electronic structures in
a magnetic field were calculated using ‐ GHF with 6-31G
London AOs in the Chronus Quantum software package.
In the di-Cr(III) molecular complex, the octahedral ligand

field splits Cr d orbitals into e and t2 sets, where three unpaired
electrons occupy the t2 manifold (Figure 8b). In contrast to the
previous molecular H2 system where the ground state at
equilibrium bond length is in a nonmagnetic closed-shell
configuration, the ground state of the di-Cr(III) molecular
complex exhibits a magnetic ‐ GHF solution. Cr(III) cations in
an octahedral coordination environment bridged by oxygen
atoms are known to have antiferromagnetic superexchange

coupling.66−68 The J constant in eq 20 for superexchange
coupling is negative in sign, favoring the antiferromagnetic spin
alignment in the ground state (⟨Sz⟩ = 0; see Figure 8b). The lack
of electron correlation in Hartree−Fock calculation gives rise to
an overestimation of the J constant magnitude because the
correlation effect has an opposite contribution to the magnet-
ism.66 Nevertheless, qualitative characteristics and trends of spin
phase transitions can still be captured by ‐ GHF calculations
with London AOs.
In the absence of an external magnetic field, the ground-state

wave function of the di-Cr(III) molecular complex obtained
from the ‐ GHF calculation is antiferromagnetic. Figure 8 plots
the relative total energy compared to that in the absence of a
magnetic field and the expectation value of Sz as a function of
applied magnetic field strength. When the magnetic field is
relatively weak, the system is in the antiferromagnetic state. In
this region, the superexchange coupling is constant and the small
energy change is solely due to the orbital Zeeman and
diamagnetic terms. As the magnetic field reaches a critical
point (∼60 × 10−6 au) where a small change in spin alignment
can give rise to a spin Zeeman term strong enough to overcome

Figure 6. Energetic contributions of spin Zeeman, orbital Zeeman, and
diamagnetic terms. |Bz| = 0.01 au.

Figure 7. Molecular structure of a dichromium molecular complex,
[(H3N)4Cr(OH)2Cr(NH3)4]

4+ that hasD2h symmetry. Each Cr atom is
in a distorted octahedral coordination environment. The magnetic field
is applied in the +z direction, perpendicular to the Cr−O−Cr−Oplane.

Figure 8. (a) Total energy of the di-Cr(III) complex in a finitemagnetic
field. (b) Expectation value of Sz of the ‐ GHF solution.
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the antiferromagnetic superexchange coupling, the system starts
to undergo a spin phase transition. As themagnetic field strength
increases, the energy of the molecule decreases due to the
increasing spin Zeeman contribution. The change of expectation
value of Sz indicates that the spin state gradually switches from
the antiferromagnetic ⟨Sz⟩ = 0 to ferromagnetic ⟨Sz⟩ = −3
configuration (Figure 8b). This case study suggests that ‐ GHF
calculations with London AOs can be used to investigate
magnetic phase transitions in transition metal complexes.

4. CONCLUSIONS

Presented in this article is a framework of an ab initio variational
approach using complex generalized Hartree−Fock ( ‐ GHF)
with London orbitals to effectively explore the spin phase space
in the presence of a homogeneousmagnetic field.We introduced
the implementation of the ‐ GHF approach within the spinor
formalism. In order to account for gauge-origin independence in
the self-consistent field, the ‐ GHF is represented in the
London orbital basis with a magnetic field complex phase factor.
Recursive algorithms for computing one- and two-electron
integrals of London orbitals are provided in the Appendix.
Additionally, a Pauli matrix representation of the ‐ GHF is
introduced in this work that allows for the separation of spin
contributions from the scalar part of the Fock matrix.

‐ GHF with London orbitals in the presence of a
homogeneous magnetic field has been applied to study the
spin phase transition in a molecular H2 system. Noncollinear
spin configurations have been observed during the phase
transition from a singlet to triplet state. The competing driving
forces of exchange coupling and the spin Zeeman effect have
been shown to govern the spin phase transition and its transition
rate. In addition, energetic analysis suggests that in the presence
of a static magnetic field orbital Zeeman and diamagnetic terms
are important contributions in a closed-shell configuration,
while the spin Zeeman term is the dominant interaction driving
force in an open-shell state.
The variational ‐ GHF method with London orbitals can also

be used to compute magnetic phase transitions in molecular
complexes driven by an external magnetic field. Results show
that there exists a critical point where the spin Zeeman is large
enough to compete with the superexchange coupling so that the
spin phase transition takes place and drives the magnetic phase
transition.
The method presented in this work is based on the single

Slater determinant wave function ansatz, which lacks important
electron correlation effects. Future developments will use the
variational ‐ GHF reference for correlated electronic structure
methods, which will provide more accurate descriptions of spin
and magnetic phase transitions.

■ APPENDIX. INTEGRAL EVALUATION

A London orbital is defined as

χ χ̃ = − · −r k r R( , ) ( )e k r R
A A

i ( )A A (21)

where {χ} are primary atom-centered Gaussian-type orbitals

χ = − − − ζ− | − |x A y A z A( ) ( ) ( ) ex
a

y
a

z
a r A

a
x y z a

(22)

| − | = − + − + −x A y A z Ar A ( ) ( ) ( )x y z
2 2 2

(23)

A = {Ax,Ay,Az} is the coordinate of the atom center and a =
{ax,ay,az} is the angular momentum. ζa is the exponent of
primary Gaussian-type orbitals.
The London orbital defined in eq 21 has the following identity

χ χ̃* = ̃ −μ μr k r k( , ) ( , )A A (24)

The one-electron integral for any one-electron operator Ô1 can
be defined as

∫
∫

χ χ

χ χ

| ̂ | = ̃* ̂ ̃

= ̃ − ̂ ̃

O O

O

a b r r k r k

r r k r k

( ) d ( , ) ( , )

d ( , ) ( , )

1
3

A 1 B

3
A 1 B (25)

and for a two-electron operator Ô2, the integral is defined as

∫ ∫
∫ ∫

χ χ χ χ

χ χ χ χ

| ̂ | = ̃* ̃ ̂ ̃ * ̃

= ̃ − ̃ ̂ ̃ − ̃

O O

O

ab cd r r r k r k r k r k

r r r k r k r k r k

( ) d d ( , ) ( , ) ( , ) ( , )

d d ( , ) ( , ) ( , ) ( , )

2
3

1
3

2 1 A 1 B 2 2 C 2 D

3
1

3
2 1 A 1 B 2 2 C 2 D

(26)

General recursion relationships for one- and two-electron
integrals using mixed plane-wave/Gaussian-type orbitals were
presented by Obara and co-workers,69 and the application to
London orbitals was developed by Helgaker and Teale.25,70 In
this work, we use a modified Obara−Saika algorithm to calculate
one- and two-electron integrals using London orbitals. As the
derivations are similar to those in references,69,25 we only
present the working equations used in this work without going
through the detailed mathematics. Note that recursive
algorithms presented herein can be used for evaluating integrals
of mixed plane-wave/Gaussian orbitals with an arbitrary wave
vector.
The following intermediate quantities are defined for integral

recursion relationships used in this work

ζ ζ ζ= +a b (27)

η ζ ζ= +c d (28)

ξ
ζ ζ

ζ ζ
=

+
a b

a b (29)

ρ ζη
ζ η

=
+ (30)

ζ ζ
ζ ζ

=
+
+

A B
P a b

a b (31)

ζ ζ
ζ ζ

=
+
+

C D
Q c d

c d (32)

ζ η
ζ η

= +
+

P Q
W

(33)

= − +k k kp a b (34)

= − +k k kq c d (35)

A.1. Overlap Integral
The recursion for the overlap integral is
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where Nμ(a) is the μ component of the angular momentum a. a
± 1μmeans that the μ component of the angular momentum a is
raised/lowered by 1.
A.2. Kinetic Energy Integral
The kinetic integral is the second derivative of the overlap
integral

∑| | = − ∥∂
ν

ν
=

a b a b( )
1
2

( )
x y z, ,

2

(38)

The recursion relationship for the kinetic energy integral is
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where kbμ is the μ component of the wave vector kb.
A.3. Angular Momentum Integral
The angular momentum integral is defined as
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where x ̂, ŷ, and z ̂ are unit vectors in the x, y, and z directions. ∂Bμ

is the partial derivative with respect to nuclear coordinates at

atom center B. The integral of the type (a|rμ∂ν|b) where μ,ν =
x,y,z can be evaluated as linear combinations of overlap integrals
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A.4. Electric Quadrupole Integral
The recursion relationship for the electric quadrupole integral is
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A.5. Nuclear Attraction Integral
Define the operator

=
| − |

V
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(43)

where C is the nuclear coordinate. The recursion for nuclear
attraction integral is
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where Fm(T) is Boys function.
A.6. Electron Repulsion Integral
The recursion for ERI is
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where Fm is the Boys function. The horizontal recursion can be
derived from eq 47 easily.71

+ | = + | + − |μ μ μa b 1 cd a 1 b cd A B ab cd( ( ) ) (( ) ) ( ) ( )m m m( ) ( ) ( )

(50)
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■ NOTE ADDED AFTER ASAP PUBLICATION
This paper was published ASAP on December 13, 2018, with
errors in equations 47 and 50. The corrected version was
reposted December 18, 2018.
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