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ABSTRACT
The solution of large scale eigenvalue problems (EVP) is often the
computational bottleneck for many scientific and engineering appli-
cations. Traditional eigensolvers, such as direct (e.g. ScaLAPACK)
and Krylov subspace (e.g. Lanczos) methods, have struggled in
achieving high scalability on large computing resources due to
communication and synchronization bottlenecks which are inher-
ent in their implementation. This includes a difficulty in developing
well-performing ports of these algorithms to architectures which
rely on the use of accelerators, such as graphics processing units
(GPU), for the majority of their floating point operations. Recently,
there has been significant research into the development of eigen-
solvers based on spectrum slicing, in particular shift-invert spec-
trum slicing, to alleviate the communication and synchronization
bottlenecks of traditional eigensolvers. In general, spectrum slicing
trades the global EVP for many smaller, independent EVPs which
may be combined to assemble some desired subset of the entire
eigenspectrum. The result is a method which utilizes more float-
ing point operations than traditional eigensolvers, but in a way
which allows for the expression of massive concurrency leading
to an overall improvement in time-to-solution on large computing
resources. In this work, we will examine the performance of par-
allel shift-invert spectrum slicing on modern GPU clusters using
state-of-the-art linear algebra software.

CCS CONCEPTS
• Mathematics of computing→ Solvers; Mathematical soft-
ware performance; • Applied computing→ Physics.
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1 INTRODUCTION
Large-scale eigenvalue problems (EVP) have become ubiquitous
in many areas of computational science and engineering such as
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quantum physics and chemistry simulations, materials design, par-
ticle accelerator modeling, structural engineering [46] and machine
learning [4]. A prominent example of this type of EVP, and the
primary target of this work, is the non-linear self-consistent field
EVP commonly encountered in large scale electronic structure cal-
culations such as those based on density functional theory. There
has been a tremendous amount of effort to develop efficient parallel
algorithms for computing all or a subset of eigenvalues and the
corresponding eigenvectors of large dense or sparse matrices [3].
Many of these algorithms have been implemented efficiently, and
can scale to hundreds or thousands of processors on traditional
high performance computers. Eigenvalue problems that required
hours to solve 10 years ago on a workstation can now be solved in a
few minutes or seconds on distributed memory many-core parallel
computers. However, the demand for even faster eigensolvers still
remains.

The recent surge in the number of computing clusters equipped
with accelerators such as graphics processing units (GPU) has com-
pletely transformed the landscape of high performance computing.
Many linear algebra algorithms have been shown to benefit from
such architectures and achieve significant performance improve-
ments [12, 19, 28]. A natural question one would ask is whether
similar performance gains can be achieved for eigensolvers on dis-
tributed memory architectures equipped with GPUs. The complete
answer to this question is yet to be determined. In this paper, we
report our latest effort to develop a symmetric eigensolver which
is capable of leveraging the computational resources of large com-
puting clusters with GPU accelerators.

GPUs exhibit a number of characteristics one must consider in
developing efficient algorithms:
• high bandwidth (O(900 GB/s)) but low capacity (O(16 GB))
memory directly accessible from the device,
• low bandwidth (O(50 GB/s)) data transfers between host and
device memory,
• and a large number of computational threads which allows
for the expression of massive concurrency in comparison
with modern CPU architectures (O(16x) FLOP/s per node
over Intel Knight’s Landing).

As a result, algorithmswhich are capable of expressing large amounts
of concurrency with minimal data movement between host and
device are best suited for GPU implementation. However, due to
its low capacity, it is often the case that the memory requirement
of a particular algorithm exceeds the capacity of a single GPU. As
such, optimal implementations of these algorithms require mini-
mization of the size and frequency of data transfers between host
and device to ensure data locality and thus amortize the impact
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of these low bandwidth transfers on the ability of the device to
express concurrency.

Over the years, significant progress has been made in the devel-
opment of efficient CPU implementations of dense eigensolvers for
shared memory (e.g. LAPACK [1, 10]) and distributed memory ar-
chitectures (e.g. ScaLAPACK [5], ELPA [30, 37], QDWH [36]). More
recently, a sizable research effort has been afforded to the exten-
sion of these algorithms to single GPU [20] and multi-GPU [29, 42]
implementations. As will be shown in this work, for matrices that
can fit in the device memory of a single GPU, an efficient GPU im-
plementation of a symmetric dense eigensolver can achieve a 2x-3x
speedup over state of the art CPU implementations. However, dis-
tributed GPU implementations of dense eigensolvers demonstrate
poor strong scaling in comparison with their CPU counterparts.
This makes further improvements by utilizing more GPUs in a
distributed environment more difficult.

The poor strong scaling of dense symmetric eigensolvers based
on the reduction of the symmetricmatrix to tridiagonal form through
successive orthogonal transformations is fundamentally attributed
to the communication and synchronization bottlenecks which are
inherent in their implementation. Communication reducing tech-
niques can be used in the QR-based Dynamically Weight Halley
(QDWH) algorithm [39] which is a spectral divide-and-conquer
approach that constructs a sequence of spectral projectors using
approximations to matrix sign functions [2]. Alternative approx-
imations to the matrix sign function via a more general Zolotov
function [38] can also be used. But synchronization bottleneck still
exists, at least at the top level of the divide-and-conquer tree. For
GPU implementations of these algorithms, low capacity device
memory and low bandwidth memory transfers between host and
device further exacerbate these problems by impeding the concur-
rency which may be expressed in any one step of the reduction. As
a result, strong scaling often stagnates (or inverts) at relatively low
amounts of computational resources.

In this paper, we examine an alternative approach to the solution
of the symmetric EVP which addresses the communication and syn-
chronization bottlenecks of these types of dense eigensolvers. Our
approach partitions the eigenvalues to be computed into several
subintervals and computes eigenvalues and corresponding eigen-
vectors within each subinterval independently and such that the
majority of the computation may be performed concurrently. We
will refer to this approach as a spectrum slicing algorithm. Note that,
there is some similarity between spectrum slicing and the spectral
divide-and-conquer approach used in QWDH. However, unlike the
recursive partition used in QWDH, the partition used in spectrum
slicing is made all at once. Over the years, spectrum slicing has
been examined by several research groups [21–23, 32, 44, 47]. The
algorithms developed by these groups differ in how the spectrum
is partitioned and what algorithm is used to compute eigenvalues
within a subinterval.

In this work, we focus on the spectrum partition scheme devel-
oped in [44] due to its minimal communication overhead. We use
the shift-invert subspace iteration (SISUBIT) to compute eigenval-
ues within each subinterval, thus the resulting method is referred
to as shift-invert spectrum slicing (SISS). This approach has been

σ1 σ2 σns−1 σns

Slice 1 Slice 2 Slice ns Slice ns + 1

Figure 1: Partitioning the spectrum of interest into several slices or
subintervals which may be computed simultaneously.

demonstrated to exhibit scalable performance in distributed mem-
ory architectures [21, 23, 44, 47], and its performance characteris-
tics on many-core CPU architectures have been well documented.
Further, due to its leverage of linear system solvers rather than or-
thogonal transformations, SISS may be effectively applied to sparse
matrices as well. The ability to take advantage of the sparsity of the
matrix is absent in a traditional dense eigensolver or the QWHD
algorithm because the required QR factorization tends to destroy
the sparsity of the original matrix. To achieve scalable performance
on GPU accelerated systems (as with the analogous CPU implemen-
tations) we rely on efficient implementations of a dense or sparse
linear equation solvers for GPU architectures to carry out the bulk
of the computational work. Several GPU implementations of such
solvers are available for shared (e.g. NVIDIA’s cuSOLVER) and dis-
tributed memory (e.g. SuperLU_DIST [40], PaStiX [18], and the
Watson Sparse Matrix Package (WSMP) [17] for sparse problems
and SLATE [27] for dense problems) architectures.

To demonstrate its performance onGPU architectures, wewill ex-
amine the application of our SISS method to both sparse and dense
matrices of varying size, spanning problems for which SISUBIT
may be accommodated by a single device and those which require
SISUBIT to be distributed across several GPUs or computational
nodes. The performance of this method will be compared to various
state of the art shared memory and distributed memory dense eigen-
solvers. It will be demonstrated that for dense problems in which
SISUBIT may be accommodated by a single GPU, the proposed GPU
implementation of SISS outperforms the fastest dense eigensolver
by a factor of 9. The case when SISUBIT must be distributed is
slightly more complicated, however it will be demonstrated that
there is a promising avenue for future improvement, especially in
the context of sparse GPU solvers.

We should note that our comparison excludes a large class of
iterative eigensolvers such as the implicitly restarted Lanczos [31],
locally optimal block preconditioned conjugate gradient (LOBPCG)
[11, 24], Jacobi-Davidson [41], and polynomial filtering [32] meth-
ods. The reason for this omittance is that the performance of these
algorithms largely depends on the implementation of efficient (of-
ten sparse) matrix-vector products and the number of eigenpairs
desired. This is often an application dependent issue that is difficult
to be generalized. Furthermore, when the number of eigenpairs to
be computed is relatively large, the performance of these algorithms
often depends on how efficient the projected dense EVP is solved.

This paper is organized as follows. In Sec. 2, we give a brief
outline of the major steps of the SISS algorithm which are pertinent
to the discussion of its performance characteristics. In Sec. 3, we
examine our implementation strategy of SISS on hybrid CPU/GPU
computing architectures. The performance of these implementa-
tions will be compared to analogous CPU implementations of SISS
and dense eigensolvers available in cuSOLVER, ELPA and vendor
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optimized implementations of LAPACK and ScaLAPACK in Sec. 4.
Some discussions on the efficacy of the presented GPU implemen-
tations and Sec. avenues for further performance improvements
are provided in 5.

2 ALGORITHM
Consider the partial eigendecomposition of a system matrix A,

AX = XΛ,

where A ∈ RN×N is symmetric, X ∈ RN×M is the orthogonal
matrix of desired eigenvectors, Λ ∈ RM×M is the diagonal matrix
of desired eigenvalues, with M ≤ N . The general idea of SISS is
to divide the spectrum into several slices, each of which contains
a small subset of eigenvalues as shown in Figure 1. Two adjacent
slices, e.g. j and j + 1, are separated by a shift σj chosen by some
spectrum partition scheme [21, 32, 44, 47]. A subspace iteration
is applied to the shift-invert transformed matrix, (A − σj I )−1 to
compute eigenvalues near σj and their corresponding eigenvectors.
Note that a subset of eigenvalues in both slice j and slice j + 1 are
computed in this subspace iteration. A validation step is performed
upon the completion of the subspace iteration for each σj to decide
which eigen value and eigen vector approximations to keep.

Because each subspace iteration associated with each shift σj
is independent from those associated with other shifts, the SISS
algorithm can be easily distributed and parallelized among different
sets of computational resources. Alg. 1 outlines the major steps of a
distributed parallel SISS algorithm that assumes a set of shifts that
partition the spectrum intons+1 slices, {σj }nsj=1, has been given. The
algorithm distributes the computational workload into ns separate
tasks (one for each σj ) mapped to some subsets of the available
computational resources. We will refer to this resource subset as an
execution context in the following. Each independent task obtains a
set of approximate eigenpairs in the spectral neighborhood of its

Algorithm 1: Parallel Shift-Invert Spectrum Slicing
Input :Symmetric A ∈ RN×N , shift partition {σj }nsj=1,

number of desired eigenpairsM , basis dimension
K , and max iteration niter .

Output :Eigenvectors X ∈ RN×M , and eigenvalues
Λ ∈ RM×M .

1.1 Distribute work over j.
1.2 for j assigned to this execution context do

1.3 Form initial guess Vj ∈ RN×K
1.4 Factorize (A − σj I ) (TRF)

for i = 1 : niter do
1.5 Vj ← (A − σj I )−1Vj (TRS)
1.6 Vj ← orth(Vj ) (CholQR)

end

1.7 (X j ,Λj , ®ri ) ← RayleighRitz(A,Vj ) (RR)

end

1.8 (X ,Λ) ← DistValidate({(X j ,Λj , ®r j )})

Algorithm 2: Cholesky QR Algorithm (CholQR)
Input :V ∈ RN×K
Output :Q ∈ RN×K such that QTQ = I .

2.1 Y ← VTV

2.2 L← Y = LLT (Cholesky)
2.3 Q ← VL−T

associated σj by constructing a basis of dimension K which spans
the local eigenspace. In practice, ns is chosen so that the number
of eigenvalues near each shift, which is approximately M/ns is
relatively small. We have found that setting K ≈ 10⌈M/ns ⌉ is often
sufficient to ensure rapid convergence in most cases [44]. Once all
tasks have completed, there is a single synchronization step which
allows for the desired eigenpairs to be extracted.

Once this validation has been completed, the desired eigenpairs
are irregularly distributed among the compute ranks due to the
fact that there is no guarantee that all spectrum slices contain the
exact same number of eigenvalues. As such, one may optionally
gather or replicate the combined set of desired eigenpairs using
MPI_(All)gatherv. However, we note that this is not always a
necessary synchronization step, as it is often the case that one may
extract the required information of the eigenvectors in this irregular
format to avoid the communication of the eigenvectors directly.

There are four primary computational kernels in Alg. 1. The first
kernel (Line 1.4) performs a triangular factorization (TRF) of the
shifted system matrix into either LU or LDLT triangular factors. For
dense system matrices, this factorization scalesO(N 3) with a much
lower prefactor than direct dense eigensolvers. For sparse problems,
it is possible to achieve O(N 2) or even O(N ) scaling depending on
the sparsity pattern [14]. The second kernel (Line 1.5) solves a
set of linear systems using the triangular factors (TRS) produced
by TRF. This process formally scales O(KN 2) for dense system
matrices and possibly as low asO(NK) for sparse matrices. Line 1.6
produces an orthonormal subspace from a non-orthogonal input.
Several algorithmic choices exist for the production of this subspace,
however in this work we will employ the Cholesky QR (CholQR)
(Alg. 2) due to its low communication overhead and leverage of
level-3 BLAS primitives. CholQR scales as O(NK2). Line ?? are
collectively known as the shift-invert subspace iteration (SISUBIT),

Algorithm 3: Rayleigh-Ritz Procedure (RR)
Input :Symmetric A ∈ RN×N , V ∈ RN×K
Output :Approximate eigenvalues Λ ∈ RK×K , eigenvectors

X ∈ RN×K such that XTX = I , and residual norms
®r ∈ RK

3.1 W ← VTAV

3.2 SolveWC = CΛ (EVP)
3.3 X ← VC

3.4 R ← AX − XΛ

for k = 1 : K do
3.5 ®rk = ∥R(:,k)∥

end
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and must be performed niter times for each shift. Note that we will
refer to TRF and the niter invocations of SISUBIT collectively as
“SISUBIT" in following for brevity. Once the basis has been produced,
Line 1.7 constructs a set of eigenpair approximations in the spectral
neighborhood of each shift and their associated residual norms
through the Rayleigh-Ritz (RR) procedure (Alg. 3). The complexity
of RR is O(KN 2) for dense system matrices and can be as low as
O(NK) for sparse matrices. However, due to the task dependency
pattern of matrix-matrix multiplication vs TRS, RR admits a much
lower prefactor than TRS despite admitting the same formal scaling
(as will also be demonstrated in Sec. 4). In the following sections,
we examine the implementation and performance of these kernels,
as well as their integration into parallel SISS.

3 IMPLEMENTATION
In this section, we examine implementation strategies for SISUBIT
and parallel SISS for distributed computing environments with GPU
accelerators. The variations of parallel SISS implementations pri-
marily differ in their choice for how to select {σj }, how to distribute
the work (Line 1.1) and how to validate and combine the distributed
eigenpair results (Line 1.8). We will not explicitly treat these aspects
in this work as they are highly problem dependent. Instead, we will
focus on the common aspects of all SISS implementations which
are pertinent to performance, namely the concurrent execution of
SISUBIT and synchronization of spectral slice metadata to allow
for extraction of the desired eigenpairs.

In the following, we will define an execution context to be a
heterogeneous compute platform consisting of some number of
CPU and GPUs. The total set of available computational resources
will be defined as np of these execution contexts, and each context
will be assumed to be identical. Further, we will make the following
assumptions to simplify the remainder of the discussion:

• niter is a constant and the same for each shift.
• the available computing resources allow for a balanced distri-
bution ofns computational tasks, i.e.ns ≥ np ,ns modnp = 0,
and each execution context will perform SISUBIT for ns/np
shifts.
• ns may be chosen to allow for a shift distribution which
permits rapid convergence of the desired eigenpairs and
such that the memory available to each execution context
is able to store at least O(NM/ns ) data in addition to the
O(N 2) storage of the system matrix for dense problems and
O(N ) for sparse problems.
• {σj } has been chosen as to have each of the spectral slices
contain roughly the same number of eigenvalues (i.e. such as
the a priori spectral density estimation scheme from [34, 45]).
We note for clarity that these estimation schemes may be
replicated and require little to no communication, thus not
affecting the overall scalability of the proposed method.
• and the validation / combination scheme only requires the
communication of O(M) data, e.g. eigenvalue approxima-
tions, residual norms, etc. This is generally possible if full
factorizations of the shifted system matrices are available
through comparison of the inertial counts of adjacent shifts
[7, 16, 44] (see Fig. 2).
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Figure 2: Example parallel SISS synchronization of slice metadata
for 3 shifts distributed across 3 execution contexts. The boxes on
the left (right) represent the status of the slice metadata pre-(post-
) synchronization, and the arrows indicate the communication of
data. The size of each box represents its relative memory footprint.
Note that only the small boxes are communicated.

Due to the fact that, by design, SISS places shifts near clusters of
eigenvalues, the condition numbers of the resulting shifted linear
systems are often quite large (O(108)). As a result, standard mixed
precision schemes for linear system solution [6] are often too nu-
merically unstable for use with SISS. Thus, for this work, we will
limit the discussion to purely double precision arithmetic.

3.1 SISUBIT Implementation
One of the hallmarks of parallel SISS is its ability to quickly re-
solve the desired eigenpairs for EVPs that are too large to be solved
efficiently with traditional eigensolvers. As such, it will often be
the case that the memory requirements for SISUBIT cannot be ac-
commodated by a single compute node. Thus, we consider two
regimes of concurrency for SISUBIT: the regime where the mem-
ory requirement of SISUBIT is below the capacity of the shared
memory accessible to a single compute node (i.e. no network com-
munication is incurred within its execution context), and the regime
where matrices and vectors must be stored in a distributed fashion
amongst several compute nodes. We will refer to these regimes as
SM-SISUBIT (shared memory) and DM-SISUBIT (distributed mem-
ory), respectively. We note for clarity that shared memory is meant
to indicate memory which is directly accessible from all of the
resources of an execution context, thus for GPU implementations
of SM-SISUBIT, this means that these matrices may be stored in the
device memory of a single GPU rather than distributed amongst
the possibly several devices available to a single compute node.
Implementations of SISUBIT which utilize the distributed storage
of the system matrices across several GPUs will be considered DM-
SISUBIT, even if those GPUs are associated with the same compute
note. In the following, we discuss the CPU and GPU implementa-
tions of SM- and DM-SISUBIT in terms of state of the art numerical
linear algebra software.

Dense SM-SISUBIT Implementation. For dense problems which are
able to reside in the memory of a single compute node, the SM-
SISUBIT kernels may be composed of standard linear algebra prim-
itives provided by vendor optimized BLAS and LAPACK libraries.
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Due to its prevalence in contemporary HPC and the maturity of
its dense linear algebra software stack, we will limit our discus-
sion to NVIDIA GPUs and thus the cuBLAS and cuSOLVER li-
braries for accelerated, single-device implementations of BLAS and
LAPACK primitives, respectively. For the GPU implementation
of dense SM-SISUBIT, we will only consider the case where the
memory requirement of a single SISUBIT may be accommodated
in the device memory of a single GPU, i.e. we do not consider
batched BLAS/LAPACK implementations for the concurrent execu-
tion of multiple instances of SISUBIT on a single device. For prob-
lems small enough in which batch implementations could be uti-
lized, the GPU direct dense eigensolver implemented in cuSOLVER
(cusolverDnDsyevd) would likely be more performant than SISS.

While cuSOLVER does implement a LDLT factorization, as of
this work it does not offer an analogous backsolve for this factoriza-
tion. Thus, for TRF and TRS we will utilize cusolverDnDgetrf (LU)
and cusolverDnDgetrs (LU solve) from the cuSOLVER library for
the GPU implementation of dense SM-SISUBIT, respectively. Anal-
ogously, we will utilize the vendor implementations of LAPACK
DGETRF and DGETRS for the respective CPU implementations.

For shared memory CholQR, the inner product (Line 2.1) has
been implemented using cublasDgemm and DGEMM for the CPU and
GPU implementations, respectively. For Line 2.2 (Line 2.3), the
GPU and CPU implementations have utilized cusolverDnDpotrf
(cublasDtrsm) and DPOTRF (DTRSM), respectively. Similarly, the
application of the system matrix to the basis as required by RR
(Line 3.1) has been implemented by cublasDgemm and DGEMM for
the shared memory GPU and CPU implementations, respectively.
For Line 3.2 (Line 3.3), the shared memory CPU and CPU imple-
mentations have utilized cusolverDnDsyevd (cublasDgemm) and
DSYEVD (DGEMM), respectively. We note that the residual calculation
in Line 3.4 may be efficiently implemented by cublasDdgmm on the
GPU with no analogy in the standard LAPACK API.

As the memory requirement for SM-SISUBIT is assumed to fit
in the device memory of a single GPU, we are able to minimize
data movement between host and device by enforcing data locality
on the device throughout the computation. As TRF and TRS are
performed in place, there are a maximum of three data transfers
that would need to occur in the GPU implementation of dense SM-
SISUBIT: a single host-to-device (H2D) transfer of (A − σj I ) and Vj
prior to TRF, a H2D transfer of the A (overwriting the triangular
factors produced on the GPU) before RR, and a device-to-host (D2H)
transfer of (X j ,Vj , ®r j ) after RR. If the device memory capacity is
such that O(2N 2) data may be accommodated (in addition to the
basis), the second H2D transfer of Amay be avoided by copying A
instead of (A − σj I ) in the first step, performing a device-to-device
(D2D) copy of A locally in the high-bandwidth memory (fast), and
performing the identity shift in place on the copy of A which may
be overwritten by the triangular factors in TRF. The first H2D
transfer of A and Vj may be avoided completely if they are able to
be generated directly on the device.

Dense DM-SISUBIT Implementation. Much like the dense implemen-
tation of SM-SISUBIT, we may compose the performance critical
kernels of dense DM-SISUBIT using analogous implementations
of distributed memory linear algebra primitives. However, in con-
trast to SM-SISUBIT, there does not exist a purely GPU distributed

memory linear algebra library as of this work. Currently, the state-
of-the-art for GPU accelerated distributed memory dense linear
algebra is the SLATE library [13]. As a hybrid GPU/CPU library,
SLATE utilizes both vendor optimized CPU and GPU accelerated
implementations of BLAS/LAPACK primitives to achieve its per-
formance. For the CPU implementations of DM-SISUBIT, we will
utilize the ScaLAPACK library as it currently outperforms the CPU-
only implementation of performance critical primitives (TRF/TRS)
in SLATE [26, 27].

In analogy with SM-SISUBIT, Line ?? have been implemented us-
ing slate::gemm and PDGEMM, and Line 2.2 has been implemented
slate::potrf and PDPOTRF for SLATE and ScaLAPACK implemen-
tations, respectively. As SLATE does not currently implement an
eigensolver capable of returning eigenvectors, both ScaLAPACK
and SLATE implementations of DM-SISUBIT utilize PDSYEVD for
Line 3.2, with the latter performing a conversion to ScaLAPACK
format prior to invocation. The SLATE (ScaLAPACK) implemen-
tations of distributed memory TRF and TRS in DM-SISUBIT have
been implemented by slate::getrf (PDGETRF) and slate::getrs
(PDGETRS), respectively.

Due to the fact that SLATE is a hybrid CPU/GPU distributed
memory library, ensuring data locality on the device throughout the
computation as we have proposed in SM-SISUBIT is generally not
possible. Instead, SLATE offers a mechanismwhich pins the “origin"
of its matrices to either the host or device such that the specified
origin locality is returned post function invocation (although it may
or may not be respected internally). For SLATE implementations of
DM-SISUBIT, we have pinned the triangular factors and basis to the
device to incur minimal data movement throughout the SISUBIT
invocation. We examine the magnitude of the data movement costs
incurred by SLATE in Sec. 4

Sparse SISUBIT. For sparse TRF and TRS, we must utilize sparse
direct linear system solvers such as PARDISO [9, 25, 43] for shared
memory and SuperLU_DIST [15, 33, 35] for distributed memory
implementations, respectively. However, the status of GPU accel-
erated sparse linear algebra is much less mature than its dense
counterpart. Vendor implementations of sparse BLAS primitives
have been implemented in libraries such as NVIDIA cuSPARSE for
NVIDIA GPUs, but GPU implementations for operations for TRF
and TRS are few and far between. There are several publicly avail-
able implementations of GPU sparse direct linear solvers, including
SuperLU_DIST, PaStiX, ans WSMP. In this work, we limit our ex-
periments with sparse solvers to only include SuperLU_DIST. The
use of other GPU sparse solvers will be explored in future work. In
SuperLU_DIST, GPU acceleration is limited to its implementation of
sparse TRF: pdgstrf. At this time, SuperLU_DIST does not provide
a GPU accelerated implementation of sparse TRS. The GPU acceler-
ation of pdgstrf in SuperLU_DIST is an offloaded computation, i.e.
the affinity of the data both before and after execution must be the
host, and the data movement and device computation are performed
internally. However, because the SuperLU_DIST implementation of
TRS (pdgstrs) is CPU-only as of this time, data movement is only
required before and after the TRF step and all subsequent computa-
tion (TRS, CholQR and RR) is performed on the host to preserve
data locality despite the fact that CholQR and RR may be more effi-
ciently implemented on the GPU. As SuperLU_DIST is a distributed
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memory solver, the only distinction between sparse implementa-
tions of TRF or TRS in SM- and DM-SISUBIT is in the scope of its
communication context. To have a more complete comparison with
the current status of CPU implementations of sparse-direct linear
system solvers, we also consider the implementation of SM-SISUBIT
with PARDISO implementations of TRF and TRS (both provided by
the pardiso driver with differing input parameters). We note that
while SuperLU_DIST performs a sparse LU factorization, PARDISO
is a symmetric solver which returns a sparse LDLT factorization.

For sparse SISUBIT, only the system matrices and triangular fac-
tors are stored as sparse matrices: the basis constructed by SISUBIT
is still generally a dense matrix. As such, we may use the same
CholQR kernels as the dense implementations of SM- and DM-
SISUBIT described above. With the exception of the application of
the system matrix to the basis in Line 3.1, which would be imple-
mented using sparse matrix-vector products (SpMV) in the case of
sparse matrices, the remainder of RR is also identical to the dense
implementations described previously. Due to the fact SpMV is
highly problem dependent and that RR will be performed on the
host for sparse implementations of sparse SISUBIT in this work, we
do not consider its implementation at this time. However, because
RR comprises only a small percentage of the overall execution time
of SISS, it will be demonstrated that this omittance does not yield
any measurable impact on the results of this work.

3.2 Parallel SISS Implementation
Given an implementation of either SM- or DM-SISUBIT, parallel
SISS is agnostic as to whether the computation was performed on
the CPU or the GPU or whether the basis was produced using dense
or sparse linear algebra. As has been demonstrated in the work of
[44], it is possible to validate and select eigenpair approximations
in parallel SISS through communication of only O(M) data, e.g.
the eigenvalue approximations and residual norms. As such, we
will characterize the implementation of parallel SISS as concurrent
execution of ns SISUBIT invocations on np independent computing
resources followed by a collective gather of the eigenvalue approx-
imations and residual norms computed for each shift (see Fig. 2).
This collective gather will be implemented by MPI_Allgather for
parallel SISS based on either SM- and DM-SISUBIT. As such, its
performance is only based on np , the interconnect of the computing
cluster and K , and is independent of the problem dimension N . We
note that in the case of SM-SISUBIT the MPI_Allgather is a global
collective of all np MPI ranks being used for the SISS calculation,
whereas for DM-SISUBIT, this collective may be limited to include
only the np ranks which correspond to the same processor coor-
dinate in the remote execution contexts. As the synchronization
of slice data is taken to be the sole synchronization point between
independent execution contexts, the weak scaling of SISS in this par-
adigm is thus limited only by the weak scaling of MPI_Allgather
on arrays of length K . We note that in the case of DM-SISUBIT
one must also consider the scaling of the distributed linear solver,
however, in this work, the size of the execution context for each
individual SISUBIT will be taken to be a constant, and achieving
optimal performance is very dependent on the solver and the com-
pute platform itself. Further, given the assumption that the SISS
calculation may be conducted using enough resources as to perform

a load balanced calculation, the scaling of SISS is independent on
M in this context.

4 NUMERICAL EXPERIMENTS
In this section, we perform a number of numerical experiments to
compare the performance of the CPU and GPU implementations of
parallel SISS based on the various schemes for SISUBIT discussed
in the previous section. In turn, we will examine the CPU and GPU
implementations of each of the various compute intensive kernels,
as well as the combined implementations of SISUBIT and SISS, on a
representative set of modern computing architectures. Experiments
will be performed using the resources of the Summit supercomputer
at the Oak Ridge Leadership Computing Facility (OLCF) and the
Cori supercomputer at the National Energy Research Scientific
Computing Center (NERSC).

Each Summit node consists of a two IBM POWER9 processors
and 6 V100s interconnected via NVLink (50 GB/s bidirectional peak
bandwidth) with 512 GB DDR4 memory. Each V100 has 16 GB
of high-bandwidth memory, leading to a total of 96 GB device
memory on each node. Each POWER9 processor consists of 21
cores (2x21 / node @ 3.8 GHz) with a maximum 4 hardware threads
(HWT) per core. From the Cori supercomputer, experiments will
be performed using two sets of CPU architectures: Intel Xeon Phi
Knight’s Landing (KNL) and Intel Xeon Gold 6148 (XG). Each KNL
node consists of 68 cores (@ 1.4 GHz) with a maximum 4 HWT
per core, and 96 GB DDR4 memory and 16 GB high-bandwidth
MCDRAM. Each XG processor consists of 20 cores (2x20 / node @
2.40 GHz) with a maximum of 2 HWT per core.

As was discussed in Sec. 3, the performance of SISUBIT is heav-
ily reliant on the existence of vendor optimized BLAS/LAPACK
libraries for the target architectures. For single GPU dense linear
algebra, we have used the cuBLAS and cuSOLVER libraries pro-
vided by NVIDIA (CUDA version 10.1.168). For POWER9 CPUs, we
have used the BLAS implementation featured in the Engineering
Scientific Software Library (ESSL version 6.1.0) provided by IBM. As
ESSL does not feature a full LAPACK implementation, the missing
functionality has been resolved by the reference LAPACK imple-
mentation provided by NETLIB. For Intel CPUs, we have utilized
the BLAS and LAPACK implementations provided by the Intel Math
Kernel Library (MKL version 19.0.1). The SLATE and ScaLAPACK
(version 2.0.2) libraries used for distributed memory BLAS/LAPACK
have been linked to the vendor BLAS/LAPACK libraries of their
respective architectures for their single node performance. Unless
otherwise noted, SLATE will utilize a 7-to-1 MPI-to-GPU affinity in
its implementations of DM-SISUBIT. For sparse TRF and TRS, we
have used SuperLU_DIST (version 6.3.0) and PARDISO (as imple-
mented in Intel MKL 19.0.1).

As all of the considered CPU architectures feature multiple HWT
per physical core, there is some variability in BLAS/LAPACK per-
formance from differing ratios of HWT. All calculations using
POWER9 and KNL CPUs will be performed using 2 HWT / core,
and those using on XG will be performed using 1 HWT / core. Cal-
culations performed on POWER9 CPUs will utilize 42 cores, KNL
CPUs will utilize 64 cores (4 reserved for OS processes), and XG
will utilize 40 cores, unless otherwise noted.
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Figure 3: Scaling of slice metadata (eigenvalue approximations and
residual norms) synchronization for various values ofK on the Sum-
mit supercomputer. Calculations were performed with 6 MPI ranks
per Summit node.

For experiments involving dense SISUBIT, test matrices were
randomly generated according to the normal distribution N (0., 1.),
and the systemmatrices were diagonally shifted by a constant factor
proportional to their order. For sparse experiments, we have used
the Ga10As10H30 test matrix (N = 113, 081, NNZ = 6, 115, 633)
from the SuiteSparse Matrix Collection [8]. The Ga10As10H30 ma-
trix is a discretized Kohn-Sham Hamiltonian generated by PARSEC:
a finite-element electronic structure software based on density func-
tional theory.

In the following, we compare the performance of the proposed
SISS implementation with dense eigensolvers in the cuSOLVER,
LAPACK, ScaLAPACK and ELPA libraries. All dense eigensolver
results were obtained on the Summit supercomputer and use a
blocking factor of NB = 128. All distributed eigensolver times
reported represent the minimum time to solution at the extent of
the strong scaling of these methods.

To compare the performance of SISS implementations with dense
eigensolvers, we examine the case when each execution context
performs SISUBIT for a single shift, i.e. np = ns . Figure 3 shows
the scaling of slice synchronization (per the discussion in Sec. 2)
for various values of K on the Summit supercomputer. Even for
large K and large processor counts, the amount of time spent in
synchronization is under 1 second. As this is negligible to the overall
computation, it will be approximated in the following by adding 1
second to the execution time of a single execution of SM- or DM-
SISUBIT. We will refer to this scheme as the proxy application for
SISS in the following.

4.1 Dense SM-SISUBIT + SISS
For shared-memory execution contexts, we have compared V100,
POWER9, KNL and XG implementations of dense SM-SISUBIT and
their integration into parallel SISS per the proxy application dis-
cussed in the previous section. A summary of these results is given
in Tab. 1. For TRF and TRS, there was considerable variability in
the performance of the CPU implementations between the different
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Figure 4: Wall time comparison for CPU and GPU implementa-
tions of dense SM-SISUBIT as a function of problem dimension (N ).
Times are given in milliseconds and include data transfers between
host and device. All calculations use K = 100.
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Figure 5: Wall time comparison for dominant costs in the CPU and
GPU implementations of dense SM-SISUBIT. Times are given for
N = 40, 000, K = 100, and niter = 4. Data transfer times are given for
the GPU implementation and represent total times (H2D + D2H).

architectures for different problem sizes. However, the GPU imple-
mentation was demonstrated to be consistently more performant.
Similarly, the GPU implementations of CholQR and RR drastically
outperformed their CPU counterparts, however their low percent-
age of total SISUBIT compute time yields these speedups to have a
smaller impact on overall time-to-solution.

Figure 4 shows performance comparisons for dense SM-SISUBIT
as a function of problem dimension and Fig. 5 is a breakdown of
the total SISUBIT computation time into its dominant components.

Table 1: Speedups for GPU implementations of compute intensive
kernels for dense SM-SISUBIT. Speedups are relative to the fastest
CPU implementation from the considered architectures (in paren-
theses) and are calculated as tcpu/tдpu . Except for SISUBIT, GPU
times do not include host-device transfer times.

Kernel Speedup
N ≤ 1,000 N ≥ 10,000

TRF 6x (XG) 3x (KNL)
TRS 1.5x (POWER9) 4-5x (XG)
CholQR 50x (POWER9) 20x (POWER9)
RR 1.5-2x (XG) 6x (XG)
SISUBIT 1.5-2x (XG) 4x (XG)
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Figure 6: Wall time comparison for a representative SM-SISS calcu-
lation with state-of-the-art shared and distributed memory dense
direct eigensolvers (SYEVD) for N = 18, 000. Times for SISS are given
by SISUBIT + synchronization with K = 100 and niter = 4.
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Figure 7: Strong scaling comparison of ScaLAPACK and SLATE im-
plementations of DM-SISUBIT with K = 100 and niter = 4.

Component comparison was made only for XG as it was demon-
strated to be the fastest CPU implementation of SM-SISUBIT of
the considered architectures for all problem dimensions. Figure 6
compares the performance of the proxy SISS calculation with vari-
ous shared memory and distributed memory dense eigensolvers for
N = 18, 000. The extent of strong scaling for both ScaLAPACK and
ELPA was found to be a 6x6 process grid on a single Summit node
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Figure 8: Wall time comparison for dominant costs in the CPU
(ScaLAPACK) and GPU (SLATE) implementations of dense DM-
SISUBIT. Times are given for N = 100, 000, K = 100, and niter = 4.
The H2D+D2H time for the SLATE implementation is the aggregate
for the entire SISUBIT on the first MPI rank.

Table 2: Speedups for the SLATE implementation of compute inten-
sive kernels for dense DM-SISUBIT over ScaLAPACK. Values are cal-
culated as tscalapack /tslate . Values less than 1.0 represent a perfor-
mance degradation.

Kernel
Speedup

N = 100, 000 N = 300, 000
4 nodes 64 nodes 32 nodes 64 nodes

TRF 2.1x 0.8x 1.7x 1.8x
TRS 0.4x 0.2x 0.1x 0.1x
CholQR 0.07x 0.04x 0.07x 0.04x
RR 0.07x 0.02x 0.02x 0.01x
SISUBIT 2.3x 0.5x 1.1x 0.9x

for this problem dimension. ELPA eigensolver times were obtained
for the lowest 9,000 eigenpairs and the GPU eigensolver therein
used a 6-to-1 MPI-to-GPU affinity. The GPU implementation of
dense SM-SISUBIT outperformed the shared-memory eigensolver
in cuSOLVER by a factor of 9x, the fastest shared-memory CPU
eigensolver (XG) by a factor of 25x, the fastest distributed-memory
CPU eigensolver (ELPA) by a factor of 44x and the distributed-
memory GPU eigensolver in ELPA by a factor of 11x.

4.2 Dense DM-SISUBIT + SISS
For distributed memory execution contexts, we have compared
SLATE and ScaLAPACK implementations of DM-SISUBIT and their
integration into parallel SISS per the proxy application discussed
in the previous section. In particular, we have examined the strong
scaling of the individual DM-SISUBIT kernels for several problem
dimensions across 4, 16, 32 and 64 Summit nodes corresponding to
12x14, 24x28, 23,42 and 48x56 process grids, respectively, for both
ScaLAPACK and SLATE implementations. NB was chosen to be
128 for ScaLAPACK calculations and 512 for SLATE calculations. A
summary of these results is given in Tab. 2

TRF using SLATE outperforms the ScaLAPACK implementation
at low processor counts for all considered problem dimensions, but
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Figure 9: Wall time comparison for a representative DM-SISS calcu-
lation with state-of-the-art distributed memory dense direct eigen-
solvers (SYEVD) for N = 100, 000. Times for SISS are given by
SISUBIT + synchronization with K = 100 and niter = 4.
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Figure 10: Wall time comparison between a sparse SISUBIT cal-
culation and distributed memory direct eigensolvers (SYEVD) for
Ga10As10H30. Times for SISUBIT are given for K = 100 and niter =
4 and do not include CholQR or RR.

ScaLAPACK exhibits better strong scaling and is able to outperform
SLATE at larger processor counts for most problem dimensions.
As of this work, the SLATE implementation of TRS is drastically
outperformed by ScaLAPACK across all problem dimensions and
processor counts. The case is more drastic for CholQR and RR. We
note for clarity that the node counts for the timings of CholQR
and RR in Tab. 2 are representative of the larger SISUBIT invo-
cation, i.e. CholQR and RR are only distributed across a subset
of those processors based on the blocking factors. Despite the ill-
performant implementations of TRS, CholQR and RR, the SLATE
implementation of DM-SISUBIT is able to outperform the ScaLA-
PACK implementation for low processor counts as is illustrated in
Fig. 7. This is due to the fact that these kernels are not the dominant
cost of DM-SISUBIT. For a breakdown of the total DM-SISUBIT
calculation in this regime into its component kernels, see Fig. 8.

Figure 9 compares the performance of the SLATE and ScaLA-
PACK implementations of the proxy SISS calculation with vari-
ous distributed memory dense eigensolvers for N = 100, 000. The
SLATE and ScaLAPACK SISS calculations were performed on 4
nodes with the previously described processor grids, and the eigen-
solver calculations were performed on a 32x36 process grid across
32 Summit nodes. This was found to be the extent of the scaling
for these eigensolvers for the minimum time to solution. ELPA
times represent obtaining the lowest 20,000 eigenpairs and the GPU
eigensolver therein used a 6-to-1 MPI-to-GPU affinity. The SLATE
implementation of DM-SISUBIT outperforms the fastest distributed
memory CPU eigensolver (ELPA) by a factor of 1.7x, but is outper-
formed by the distributed memory GPU eigensolver in ELPA by a
factor of 1.4x.

4.3 Sparse SISUBIT + SISS
As was discussed in Sec. 3, the current state of GPU implemen-
tations of sparse kernels for SISUBIT is rather limited as of this
work. However, it is instructive to examine how these implemen-
tations compare to the current state of dense eigensolvers. Fig-
ure 11 shows the strong scaling of CPU and GPU sparse TRF for the
Ga10As10H30 test matrix using SuperLU_DIST and compares these
to the analogous, symmetric operations in PARDISO. We note that
the SuperLU_DIST calculations were performed on the Summit
supercomputer while the PARDISO calculation was performed on
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Figure 11: Wall time comparison of shared and distributed mem-
ory implementations of sparse TRF and TRS for Ga10As10H30. TRS
times are given for K = 100.

KNL. Much like the dense implementations of distributed memory
TRF, the GPU offloaded implementation of sparse TRF outperforms
the CPU implementation with low processor counts (1.1x). The
CPU implementation exhibits better strong scaling and is able to
outperform the GPU implementation for large processor counts.
Further, the distributed SuperLU_DIST TRF is able to obtain a lower
time-solution over PARDISO, but the symmetric TRS implemented
by PARDISO is far more performant than the analogous implemen-
tation in SuperLU_DIST.

Figure 10 compares the performance of SuperLU_DIST and PAR-
DISO implementations of the proxy SISS calculation with various
distributed memory dense eigensolvers. CholQR and RR times are
not included in the SISUBIT times, but per the previous results
in the dense implementation of SISUBIT, these contributions are
negligible. Dense eigensolver calculations were performed with a
32x26 processor grid. We note that the SuperLU_DIST times are for
the distributed CPU implementation at the extent of its strong scal-
ing (32x42 processor grid on 32 Summit nodes) and the PARDISO
times are for SM-SISUBIT as we have not considered the PARDISO
cluster interface in this work. The SuperLU_DIST (PARDISO) im-
plementations of SISUBIT were about to outperform the fastest
(ELPA) distributed CPU eigensolver by a factor of 4.1x (4.8x) and
the distributed GPU eigensolver in ELPA by a factor of 1.4x (1.6x).

5 CONCLUSIONS
In this work, we have presented several implementations strategies
for parallel SISS for distributed architectures with GPU accelerators.
As was discussed in the introduction, the primary factor to consider
in the implementation of GPU-based linear algebra algorithms is
optimally utilizing the low capacity device memory to avoid costly
transfers between host and device. For small to medium sized dense
problems (N < 40, 000), the memory requirement of SISUBIT may
be accommodated by a single GPU. To demonstrate the efficacy
of the proposed GPU implementation of SISS, we have compared
shared memory CPU and GPU implementations of SISUBIT on a
representative set of modern CPU architectures. We have demon-
strated that wemay obtain very high-performance implementations
of SISS by offloading the performance critical kernels to the GPU
via vendor optimized dense linear algebra libraries such a cuBLAS
and cuSOLVER from NVIDIA and ensuring data locality to prevent
costly data transfers between host and device. We have demon-
strated that it is possible to achieve performance improvements
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upwards of 9x over state of the art shared and distributed mem-
ory eigensolver with this scheme. We note for posterity that the
data transfer times are non-negligible in this scheme ((Fig. 5), thus
these performance improvements would be further enhanced for
problems in which it could be eliminated (per the discussion in
Sec. 2).

For large dense problems which must be distributed, the data
movement incurred by current distributed GPU linear algebra li-
braries such as SLATE yield a large impact on the performance of
SISUBIT. For relatively low processor counts, SLATE is able to out-
perform analogous ScaLAPACK implementations of compute inten-
sive kernels. However, we have demonstrated that the ScaLAPACK
implementations of these kernels exhibit better strong scaling than
the SLATE implementations, leading to ScaLAPACK outperforming
SLATE at large processor counts. Further, we have demonstrated
that the implementations of TRS, CholQR and RR are currently
ill-suited for SLATE implementation. Although not expressly con-
sidered in this work, the conversion utilities between SLATE and
ScaLAPACK storage formats offered by the SLATE library would
allow for utilization of the ScaLAPACK implementations of these ill-
performance kernels, thus only utilizing SLATE for the accelerated
implementation of TRF. As TRF is the dominant cost in SISUBIT,
this would likely offer a more performant implementation scheme
than the one presented in this work. However, this performance
improvement would likely be minimal due to the fact that these
kernels are not dominant in cost.

Due to space and time limitation, we have not performed compar-
isons with spectral divide-and-conquer methods based on QDWH
and Zolotov (ZOLO) approximation [38] polar decomposition. Al-
though efficient parallel implementations of QDWH and ZOLO
polar decomposition are available [36, 42], some effort is needed to
ensure the recursive partition of the spectrum is well load balance
in the divide-and-conquer procedure, and data communication re-
quired in the partition and back transformation is minimized. We
will perform a careful comparison with this type of solver for large
dense eigenvalue problems in future work.

For sparse problems, the current state of GPU accelerated lin-
ear algebra software for kernels relevant to the implementation
of SISUBIT is far less mature than its dense counterpart. We have
demonstrated that the current state of the art for distributed CPU/GPU
implementations of sparse TRF (SuperLU_DIST) exhibits far better
strong scaling in its CPU implementation than its GPU implemen-
tation. As such, for large processor counts, it is more beneficial
to use the CPU implementations at this time. We note however
that the superior performance of the PARDISO implementations of
TRF and TRS indicate that GPU acceleration of sparse symmetric
solvers would be further beneficial to achieving better performing
implementations of sparse SISUBIT. As was aforementioned, inte-
gration of other GPU sparse solvers such as PaStiX ans WSMP will
be explored in future work.

Despite these results for distributed sparse and dense imple-
mentations of SISUBIT, we remain optimistic for the future. The
development of GPU accelerated distributed memory linear algebra
is still very much in its infancy relative to its CPU counterparts,
and is currently a very active research topic in the fields of high-
performance computing and numerical linear algebra. As these
implementations improve, so will the performance of SISUBIT. The

fact that even the CPU implementation of DM-SISUBIT outperforms
the current state of the art for CPU and GPU dense eigensolvers
(ELPA) indicates a bright future for the GPU acceleration of parallel
SISS.
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