On the High Performance Implementation of
Quaternionic Matrix Operations

wavefunction91.github.io

SIAM-CSE 2019
David Williams-Young
Scalable Solvers Group
Computational Research Division
Lawrence Berkeley National Lab

February 28, 2019

wavefunction91.github.io

Problem Motivation

® Moving towards the end of Moore's law: Simply applying
existing algorithms and data structures not sufficient.

® Quaternion symmetry is very common in many scientific and
engineering disciplines, especially those whose target involves
physical space.

® Much research has been afforded to real / complex linear

algebra algorithms to exploit this symmetry (Dongerra, et al,
1984; Shiozaki, 2018)

The quaternion algebra is [...] somewhat complicated, and
its computation cannot be easily mapped to highly opti-
mized linear algebra libraries such as BLAS and LAPACK.

Problem Statement

How can we leverage techniques such
as auto-tuning and microarchitechture
optimization to provide optimized
implementations of quaternion linear
algebra software?

This talk will attempt to answer (discuss) three questions:

® What are quaternions and why do we care?

This talk will attempt to answer (discuss) three questions:
® What are quaternions and why do we care?

® What possible use could | have for matrices of quaternions?

This talk will attempt to answer (discuss) three questions:
® What are quaternions and why do we care?
® What possible use could | have for matrices of quaternions?
® What does all of this have to do with auto-tuning?

Quaternions: Formally

Quaternions are defined as the set H of all g such that
a=de0+q'e+de+qea, ¢, FeR
with

eoej = ejeg =€, Jj€1{0,1,2,3},

3
eiej = —djeo+ Y chew, i.j€{1,2,3},
k=1

Quaternions: Formally

a,b,ceR, c¢=ab, [a,b] =0

w,v,z€ C, z=wv=w"""—whvt+ WO +whv®i [w,v]=0

a,b,c € R,

w,v,z € C,

Quaternions: Formally

c = ab, [a,b] =0

z=wv =wh" —whv! + (WO + whv®)i [w,v]=0

p,q,r € H

3
r=pq=<poq° Zp’q’>eo+z p’q +pkq°+ze p'd | e

iyj=1

[p.al= Y e (p'd — Pd’) e #0.

ijk=1

Quaternion Applications: Spacial Rotations

z

Topologically, the set of unit quaternions (ver-
sors)
V={veHst ||v]|=1}

&
=]
]
is $3, and thus isomorphic to SU(2) which pro- —)’
vides a double cover of SO(3) (rotations in R3). :

We may describe spatial rotations in R3 via
reRd— M =rle; + rPe, + r3e3

R(&,0) € SO(3) — £v =texp (Z(élel + &%e) + é3€3)>

such that

Quaternion Applications: Spacial Rotations

The SO(3) cover has found extensive exploitation in computer graphics /
vision
a b c
e (VO vl v2 v3) (4 real numbers) vs. |d e f| (9 real numbers)
g h i

® vi,vp € H, vivy (16 FLOPs) vs Ry, R, € SO(3), R1R> (27 FLOPs)

e SLERP (Spherical Linear Interpolation)

Matrices of Quaternions

The algebra generated by {ep, e1, €2, e3} is identical to the algebra
generated by the Pauli matrices, thus H = (SU(2)) C My(C),

€ <> 00, €1 HI'U3, e2<—>i<72, €3 <—>i(71,

with

10 o 1 o i 1 o0
0= 1p 11> T |1 0ol" 27 |i ol T |o -1l

Such that

q° +qti q2+q3/}
- +qi °—qti

I
| —|
lQ
o
),

o =
| I
Mm
&
—~
@]
N—r

Cl<—>CI<c—[

Matrices of Quaternions

The set of quaternion matrices, My (H), is defined by

Q=Q% + Qe + Q%» + Q%e3, Q% Q', Q% Q% € My(R).

Examining the M(C) representation of a particular element
(Qu)c = Qno0 + iQp, 03+ iQ3,02 + iQ;
w)e = Qoo+ Q03 +iQ;,02 + iQ,01.
which yields the Kronecker structure

Q=Q°®00+ Q' ®Rio3+ Q> Ricr + QR ioy

-Q Q

0 1
= [Ql Qo] € Moy (C),

Matrices of Quaternions

0 1

Qo] € Man(C),

Qe MN(H) L j§1 Q

¢ Ubiquitous in quantum chemistry / nuclear physics
(time-reversal symmetry).

® Applications in image processing and machine learning
(quaternion PCA, etc).

Formal theory for quaternion linear algebra has been developed
® QR Algorithm
® Diagonalization, SVD
e | U, Cholesky, LDLH Factorizations

Performance Considerations

Table: Real floating point operations (FLOPs) comparison for elementary
arithmetic operations using H and M, (C) data structures.

Operation FLOPs in H | FLOPs in M(C)

Addition 4 3
Multiplication 16 32

p+q <— pc+qc,
Pq < pcqc,

Performance Considerations

Table: Real floating point operations (FLOPs) comparison for common
linear algebra operations using My (H) and Mn(C) data structures.

Operation FLOPs in My(H) | FLOPs in My (C)

Addition 4N? 8N?
Multiplication 16N3 32N3

P+Q <+— Pc+ Qc,
PQ «— PcQc,

Performance Considerations

Quaternion arithmetic offers:
® (.5x required FLOPs
¢ 0.5x memory footprint (4x / 8x floats)
® 2x arithmetic intensity (FLOPs / byte)

We should be using quaternion
arithmetic!

HAXX

gh/wavefunction91/HAXX
Optimized C++14 library for quaternion arithmetic
HBLAS: Optimized quaternionic BLAS functionality

HLAPACK: Optimized quaternionic LAPACK functionality (in
progress)

Intrinsics + Assembly kernels

gh/wavefunction91/HAXX

Quaternion Matrix Multiplication

The most fundamental linear algebra operation is the general
matrix multiply (GEMM).

Time /s

Quaternion Matrix Multiplication

The most fundamental linear algebra operation is the general
matrix multiply (GEMM).

Great! Quaternion GEMM =— HP Quaternion Linear

1000

800

600

400

Algebra,

=== HGEMM-Ref

2000 3000 4000

5000
Quaternion Problem Dimension (N =M =K)

6000

Right?

log Time / s

28

. . 36
log Quaternion Problem Dimension (N =M =K)

38

matrix multiply (GEMM).

Time /s

Quaternion Matrix Multiplication

The most fundamental linear algebra operation is the general

Great! Quaternion GEMM =— HP Quaternion Linear

1000

800

600

400

Algebra,

=== HGEMM-Ref
—— ZGEMM-MKL

1000 2000 3000 4000 5000
Quaternion Problem Dimension (N =M =K)

6000

Right?

log Time / s

28 3.0 32 3.4 36 38
log Quaternion Problem Dimension (N =M =K)

Quaternion Matrix Multiplication

The most fundamental linear algebra operation is the general
matrix multiply (GEMM).

Great! Quaternion GEMM =— HP Quaternion Linear
Algebra, Right?

25
1000 === HGEMM-Ref B
—— ZGEMM-MKL /
20
800
600 W15
3 Py
P
E S .
£ 5 \
400 C10] N
AN
200 S
0
0
1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000 6000

Quaternion Problem Dimension (N =M =K) Quaternion Problem Dimension (N =M =

Reference GEMM

non-trivial

Pros:
Algorithm 0: Reference GEMM Able to implement in an
Input : A € M i(F), B € My ,(F), afternoon
;:C;al\r/g";”g)e F Architecture agnostic
Output: C = aAB + 3C Cons:
for j=1:ndo X No caching of B
o2 & = <) X Reloads all of A for each G
f;r,:;: X do X For large m, k, A load boots G
Load A, = A(.) from cache
G =G+ aABy X Relies on optimizing compiler
end for SIMD, FMA, etc
Store G; X (Scalable) parallelism is
end
X

Not tunable

High-Performance Matrix-Matrix Multiplication

A layered (Goto-style) algorithm significantly
improves performance

Pros:

v/ Caches parts of A, B for maximum
resuability

v/ Factors architecture specific p-ops
into single micro-kernel

v/ Obvious avenue for SMP
v/ Tunable!
Cons:

X Significantly more complicated than
naive algorithm

X Requires allocation of auxiliary
memory

X Micro-kernel must be written for each
architecture
Van Zee, F.G., et al 2017, ACM TOMS 7:1-7:36.

micro-kernel

3 main memory

= 3eache
3 L2 cache
B Ll cache
- registers

i B,
EHEEEEE
1Z1212212|Z|
1Z1212212|Z|
1Z1Z222|2(Z2]

sl [ZIZ\ZZ|Z 2112
ke
bl d micro-kernel ——
[ania)
[‘| ke
12%%%5%
(L=
! I

High-Performance Quaternionic GEMM (HGEMM)

The optimized implementation of GEMM in HBLAS utilizes the
Goto algorithm. In essence, Goto's original algorithm may be
extended to H by specialization of two sets routines:

® Micro-kernels which perform the H rank-1 update (assembly /
intrinsics)

e Efficient matrix packing routines (intrinsics)

and optimization of 3 caching parameters, m¢, n. and k. for the
architecture of interest.

High-Performance Quaternionic GEMM (HGEMM)

The optimized implementation of GEMM in HBLAS utilizes the
Goto algorithm. In essence, Goto's original algorithm may be
extended to H by specialization of two sets routines:

® Micro-kernels which perform the H rank-1 update (assembly /
intrinsics)

e Efficient matrix packing routines (intrinsics)

and optimization of 3 caching parameters, m¢, n. and k. for the
architecture of interest.

High-Performance Quaternionic GEMM (HGEMM)

The optimized implementation of GEMM in HBLAS utilizes the
Goto algorithm. In essence, Goto's original algorithm may be
extended to H by specialization of two sets routines:

® Micro-kernels which perform the H rank-1 update (assembly /
intrinsics)

e Efficient matrix packing routines (intrinsics)

and optimization of 3 caching parameters, m¢, n. and k. for the
architecture of interest.

Optimization of Cache Parameters

OpenTuner: An open source Python framework for
auto-tuning

Register blocks fixed (on AVX / AVX2), n, = m, = 2.
Integer discretize mc, ke € {2"}125, n. € {2"}10

Find {m¢, nc, kc} which minimizes run time (maximizes
GFLOP/s)

® Average over 5 cold (cache invalidated) runs on select matrix
sizes (500,1k,2k,4k)

Possible to brute force otimimize, but not convienient!

logaKe

Optimization of Cache Parameters

GFLOPs N, =128

10.0 215
9.5 21.4
9.0 213
8.5 21.2
8.0 21.1
7.5 21.0
7.04 20.9
6.5 20.8
6.0 T v 20.7

60 65 70 75 80 85 90 95 100
logoM

logaKe

Optimization of Cache Parameters

GFLOPs N =256

7.0 20.9

6.5 20.8

6.0 + T T T T T T T 20.7
60 65 70 75 80 85 9.0 95 100

logaM.

logzKe

Optimization of Cache Parameters

GFLOPs N, =512

7.0 20.9

6.5 20.8

6.0 + T T T T T T T 20.7
60 65 70 75 80 85 90 95 100

logaM.

logaKe

Optimization of Cache Parameters

GFLOPs N, = 1024

6.0 + T T T T T T T 20.7
6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
logaMc

Optimization of Cache Parameters

GFLOPs N, =2048

logzKe

6.0 + T T T T T T T 20.7
60 65 70 75 80 85 9.0 95 100

logaMc

Optimization of Cache Parameters

GFLOPs N. = 4096

logzKe

6.0 + T T T T T T T 20.7
60 65 70 75 80 85 90 95 100

logaMc

u}
o)
I
i
it

AVX Optimized HGEMM Implementation
Intel Sandy Bridge (L1d: 32k, L1i: 32k, L2: 256k, L3: 20480k)

OpenTuner results:
® 10 tests x 10 runs ("1 hour vs 10 hours brute force)
®* m.= k. =064
o n. = 1024

25
1000 === HGEMM-Ref
----- HGEMM-OptAVX
— ZGEMMMKL A s
204 T
800
» 600 w15
% a
o
E]
£
400 ©10
200 5
0

1000 2000 3000 4000 5000 6000

1000 2000 3000 4000 5000 6000
Quaternion Problem Dimension (N =M = K)

Quaternion Problem Dimension (N =M =K)

Conclusions

e With instruction sets newer than AVX, high-performance
quaternionic linear algebra is possible and a viable alternative
to complex linear algebra for appropriate problems.

® Goto's algorithm + auto-tuning drastically improves
performance

® |mpractical with reference implementations.

Future Work

e Fill out HBLAS and HLAPACK coverage of the BLAS and
LAPACK standards.

® Package autotuner and tuning methodology to automate
optimization of caching parameters (+...) on new
architectures.

¢ Address parallelism (SMP + MPI)

Acknowledgments

e Xiaosong Li (UW)

* $$$ ACI-1547580 (NSF), OAC-1663636 (NSF to XL)
$$$ LAB 17-1775 (DOE-BES)

Benjamin Pritchard (MolSSI)

Edward Valeev (VT)

Wissam Sid-Lakhdar (LBNL)

e QOrganizers

Audience

1ss| 8

