
On the High Performance Implementation of
Quaternionic Matrix Operations

wavefunction91.github.io

SIAM-CSE 2019
David Williams-Young
Scalable Solvers Group

Computational Research Division
Lawrence Berkeley National Lab

February 28, 2019

wavefunction91.github.io

Problem Motivation

• Moving towards the end of Moore’s law: Simply applying
existing algorithms and data structures not sufficient.

• Quaternion symmetry is very common in many scientific and
engineering disciplines, especially those whose target involves
physical space.

• Much research has been afforded to real / complex linear
algebra algorithms to exploit this symmetry (Dongerra, et al,
1984; Shiozaki, 2018)

The quaternion algebra is [...] somewhat complicated, and
its computation cannot be easily mapped to highly opti-
mized linear algebra libraries such as BLAS and LAPACK.

Problem Statement

How can we leverage techniques such
as auto-tuning and microarchitechture

optimization to provide optimized
implementations of quaternion linear

algebra software?

This talk will attempt to answer (discuss) three questions:

• What are quaternions and why do we care?

• What possible use could I have for matrices of quaternions?

• What does all of this have to do with auto-tuning?

This talk will attempt to answer (discuss) three questions:

• What are quaternions and why do we care?

• What possible use could I have for matrices of quaternions?

• What does all of this have to do with auto-tuning?

This talk will attempt to answer (discuss) three questions:

• What are quaternions and why do we care?

• What possible use could I have for matrices of quaternions?

• What does all of this have to do with auto-tuning?

Quaternions: Formally

Quaternions are defined as the set H of all q such that

q = q0e0 + q1e1 + q2e2 + q3e3, q0, q1, q2, q3 ∈ R

with

e0ej = eje0 = ej , j ∈ {0, 1, 2, 3},

eiej = −δije0 +
3∑

k=1

εkijek , i , j ∈ {1, 2, 3},

Quaternions: Formally

a, b, c ∈ R, c = ab, [a, b] = 0

w , v , z ∈ C, z = wv = w0v0 − w1v1 + (w0v1 + w1v0)i [w , v] = 0

p, q, r ∈ H

r = pq =

(
p0q0 −

3∑
i=1

piqi

)
e0 +

3∑
k=1

p0qk + pkq0 +
3∑

i ,j=1

εkijp
iqj

 ek ,

[p, q] =
3∑

i ,j ,k=1

εkij
(
piqj − pjqi

)
ek 6= 0.

Quaternions: Formally

a, b, c ∈ R, c = ab, [a, b] = 0

w , v , z ∈ C, z = wv = w0v0 − w1v1 + (w0v1 + w1v0)i [w , v] = 0

p, q, r ∈ H

r = pq =

(
p0q0 −

3∑
i=1

piqi

)
e0 +

3∑
k=1

p0qk + pkq0 +
3∑

i ,j=1

εkijp
iqj

 ek ,

[p, q] =
3∑

i ,j ,k=1

εkij
(
piqj − pjqi

)
ek 6= 0.

Quaternion Applications: Spacial Rotations

Topologically, the set of unit quaternions (ver-
sors)

V = {v ∈ H s.t. ||v || = 1}

is S3, and thus isomorphic to SU(2) which pro-
vides a double cover of SO(3) (rotations in R3).

We may describe spatial rotations in R3 via

r ∈ R3 7→ rH = r1e1 + r2e2 + r3e3

R(ê, θ) ∈ SO(3) 7→ ±v = ± exp

(
θ

2
(ê1e1 + ê2e2 + ê3e3)

)
such that

r ′ = R(ê, θ) r 7→ r ′H = vrHv−1

Quaternion Applications: Spacial Rotations

The SO(3) cover has found extensive exploitation in computer graphics /
vision

• (v0, v1, v2, v3) (4 real numbers) vs.

a b c
d e f
g h i

 (9 real numbers)

• v1, v2 ∈ H, v1v2 (16 FLOPs) vs R1,R2 ∈ SO(3), R1R2 (27 FLOPs)

• SLERP (Spherical Linear Interpolation)

Matrices of Quaternions

The algebra generated by {e0, e1, e2, e3} is identical to the algebra
generated by the Pauli matrices, thus H ∼= 〈SU(2)〉 ⊂M2(C),

e0 ↔ σ0, e1 ↔ iσ3, e2 ↔ iσ2, e3 ↔ iσ1,

with

σ0 =

[
1 0
0 1

]
, σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
.

Such that

q ↔ qC =

[
q0 + q1i q2 + q3i
−q2 + q3i q0 − q1i

]
=

[
q0 q1

−q1 q0

]
∈M2(C)

Matrices of Quaternions

The set of quaternion matrices, MN(H), is defined by

Q = Q0e0 + Q1e1 + Q2e2 + Q3e3, Q0,Q1,Q2,Q3 ∈MN(R).

Examining the M2(C) representation of a particular element

(Qµν)C = Q0
µνσ0 + iQ1

µνσ3 + iQ2
µνσ2 + iQ3

µνσ1.

which yields the Kronecker structure

QC = Q0 ⊗ σ0 + Q1 ⊗ iσ3 + Q2 ⊗ iσ2 + Q3 ⊗ iσ1

=

[
Q0 Q1

−Q1
Q

0

]
∈M2N(C),

Matrices of Quaternions

Q ∈MN(H)↔

[
Q0 Q1

−Q1
Q

0

]
∈M2N(C),

• Ubiquitous in quantum chemistry / nuclear physics
(time-reversal symmetry).

• Applications in image processing and machine learning
(quaternion PCA, etc).

Formal theory for quaternion linear algebra has been developed

• QR Algorithm

• Diagonalization, SVD

• LU, Cholesky, LDLH Factorizations

Performance Considerations

Table: Real floating point operations (FLOPs) comparison for elementary
arithmetic operations using H and M2(C) data structures.

Operation FLOPs in H FLOPs in M2(C)

Addition 4 8
Multiplication 16 32

p + q ←→ pC + qC,

pq ←→ pCqC,

Performance Considerations

Table: Real floating point operations (FLOPs) comparison for common
linear algebra operations using MN(H) and M2N(C) data structures.

Operation FLOPs in MN(H) FLOPs in M2N(C)

Addition 4N2 8N2

Multiplication 16N3 32N3

P + Q ←→ PC + QC,

PQ ←→ PCQC,

Performance Considerations

Quaternion arithmetic offers:

• 0.5x required FLOPs

• 0.5x memory footprint (4x / 8x floats)

• 2x arithmetic intensity (FLOPs / byte)

We should be using quaternion
arithmetic!

HAXX
• gh/wavefunction91/HAXX

• Optimized C++14 library for quaternion arithmetic

• HBLAS: Optimized quaternionic BLAS functionality

• HLAPACK: Optimized quaternionic LAPACK functionality (in
progress)

• Intrinsics + Assembly kernels

gh/wavefunction91/HAXX

Quaternion Matrix Multiplication

The most fundamental linear algebra operation is the general
matrix multiply (GEMM).

Great! Quaternion GEMM =⇒ HP Quaternion Linear
Algebra, Right?

Quaternion Matrix Multiplication
The most fundamental linear algebra operation is the general
matrix multiply (GEMM).

Great! Quaternion GEMM =⇒ HP Quaternion Linear
Algebra, Right?

1000 2000 3000 4000 5000 6000
Quaternion Problem Dimension (N = M = K)

0

200

400

600

800

1000

Ti
m

e
/ s

HGEMM-Ref

2.8 3.0 3.2 3.4 3.6 3.8
log Quaternion Problem Dimension (N = M = K)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

lo
g

Ti
m

e
/ s

Quaternion Matrix Multiplication
The most fundamental linear algebra operation is the general
matrix multiply (GEMM).

Great! Quaternion GEMM =⇒ HP Quaternion Linear
Algebra, Right?

1000 2000 3000 4000 5000 6000
Quaternion Problem Dimension (N = M = K)

0

200

400

600

800

1000

Ti
m

e
/ s

HGEMM-Ref
ZGEMM-MKL

2.8 3.0 3.2 3.4 3.6 3.8
log Quaternion Problem Dimension (N = M = K)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

lo
g

Ti
m

e
/ s

Quaternion Matrix Multiplication
The most fundamental linear algebra operation is the general
matrix multiply (GEMM).

Great! Quaternion GEMM =⇒ HP Quaternion Linear
Algebra, Right?

1000 2000 3000 4000 5000 6000
Quaternion Problem Dimension (N = M = K)

0

200

400

600

800

1000

Ti
m

e
/ s

HGEMM-Ref
ZGEMM-MKL

1000 2000 3000 4000 5000 6000
Quaternion Problem Dimension (N = M = K)

0

5

10

15

20

25

GF
LO

P
/ s

Reference GEMM

Algorithm 0: Reference GEMM

Input : A ∈Mm,k(F),B ∈Mk,n(F),
C ∈Mm,n(F),
Scalars α, β ∈ F

Output: C = αAB + βC

for j = 1 : n do

1 Load Cj = C (:,j)
2 Cj = βCj

for l = 1 : k do

3 Load Al = A(:,l)
4 Cj = Cj + αAlBlj

end

5 Store Cj

end

Pros:

! Able to implement in an
afternoon

! Architecture agnostic

Cons:

% No caching of B

% Reloads all of A for each Cj

% For large m, k, A load boots Cj

from cache

% Relies on optimizing compiler
for SIMD, FMA, etc

% (Scalable) parallelism is
non-trivial

% Not tunable

High-Performance Matrix-Matrix Multiplication

A layered (Goto-style) algorithm significantly
improves performance

Pros:

! Caches parts of A,B for maximum
resuability

! Factors architecture specific µ-ops
into single micro-kernel

! Obvious avenue for SMP

! Tunable!

Cons:

% Significantly more complicated than
naive algorithm

% Requires allocation of auxiliary
memory

% Micro-kernel must be written for each
architecture

Van Zee, F.G., et al 2017, ACM TOMS 7:1-7:36.

High-Performance Quaternionic GEMM (HGEMM)

The optimized implementation of GEMM in HBLAS utilizes the
Goto algorithm. In essence, Goto’s original algorithm may be
extended to H by specialization of two sets routines:

• Micro-kernels which perform the H rank-1 update (assembly /
intrinsics)

• Efficient matrix packing routines (intrinsics)

and optimization of 3 caching parameters, mc , nc and kc for the
architecture of interest.

High-Performance Quaternionic GEMM (HGEMM)

The optimized implementation of GEMM in HBLAS utilizes the
Goto algorithm. In essence, Goto’s original algorithm may be
extended to H by specialization of two sets routines:

• Micro-kernels which perform the H rank-1 update (assembly /
intrinsics)

• Efficient matrix packing routines (intrinsics)

and optimization of 3 caching parameters, mc , nc and kc for the
architecture of interest.

High-Performance Quaternionic GEMM (HGEMM)

The optimized implementation of GEMM in HBLAS utilizes the
Goto algorithm. In essence, Goto’s original algorithm may be
extended to H by specialization of two sets routines:

• Micro-kernels which perform the H rank-1 update (assembly /
intrinsics)

• Efficient matrix packing routines (intrinsics)

and optimization of 3 caching parameters, mc , nc and kc for the
architecture of interest.

Optimization of Cache Parameters

• OpenTuner: An open source Python framework for
auto-tuning

• Register blocks fixed (on AVX / AVX2), nr = mr = 2.

• Integer discretize mc , kc ∈ {2n}12n=3, nc ∈ {2n}16n=5

• Find {mc , nc , kc} which minimizes run time (maximizes
GFLOP/s)
• Average over 5 cold (cache invalidated) runs on select matrix

sizes (500,1k,2k,4k)

Possible to brute force otimimize, but not convienient!

Optimization of Cache Parameters

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
log2Mc

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

lo
g 2

K c
GFLOPs Nc = 128

20.7

20.8

20.9

21.0

21.1

21.2

21.3

21.4

21.5

Optimization of Cache Parameters

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
log2Mc

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0
lo

g 2
K c

GFLOPs Nc = 256

20.7

20.8

20.9

21.0

21.1

21.2

21.3

21.4

21.5

Optimization of Cache Parameters

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
log2Mc

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0
lo

g 2
K c

GFLOPs Nc = 512

20.7

20.8

20.9

21.0

21.1

21.2

21.3

21.4

21.5

Optimization of Cache Parameters

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
log2Mc

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0
lo

g 2
K c

GFLOPs Nc = 1024

20.7

20.8

20.9

21.0

21.1

21.2

21.3

21.4

21.5

Optimization of Cache Parameters

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
log2Mc

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0
lo

g 2
K c

GFLOPs Nc = 2048

20.7

20.8

20.9

21.0

21.1

21.2

21.3

21.4

21.5

Optimization of Cache Parameters

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
log2Mc

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0
lo

g 2
K c

GFLOPs Nc = 4096

20.7

20.8

20.9

21.0

21.1

21.2

21.3

21.4

21.5

AVX Optimized HGEMM Implementation
Intel Sandy Bridge (L1d: 32k, L1i: 32k, L2: 256k, L3: 20480k)

OpenTuner results:

• 10 tests x 10 runs (˜1 hour vs 10 hours brute force)

• mc = kc = 64

• nc = 1024

1000 2000 3000 4000 5000 6000
Quaternion Problem Dimension (N = M = K)

0

200

400

600

800

1000

Ti
m

e
/ s

HGEMM-Ref
HGEMM-OptAVX
ZGEMM-MKL

1000 2000 3000 4000 5000 6000
Quaternion Problem Dimension (N = M = K)

0

5

10

15

20

25

GF
LO

P
/ s

Conclusions

• With instruction sets newer than AVX, high-performance
quaternionic linear algebra is possible and a viable alternative
to complex linear algebra for appropriate problems.

• Goto’s algorithm + auto-tuning drastically improves
performance
• Impractical with reference implementations.

Future Work

• Fill out HBLAS and HLAPACK coverage of the BLAS and
LAPACK standards.

• Package autotuner and tuning methodology to automate
optimization of caching parameters (+...) on new
architectures.

• Address parallelism (SMP + MPI)

Acknowledgments

• Xiaosong Li (UW)

• $$$ ACI-1547580 (NSF), OAC-1663636 (NSF to XL)

• $$$ LAB 17-1775 (DOE-BES)

• Benjamin Pritchard (MolSSI)

• Edward Valeev (VT)

• Wissam Sid-Lakhdar (LBNL)

• Organizers

• Audience

