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Problem Motivation

• Moving towards the end of Moore’s law: Simply applying
existing algorithms and data structures not sufficient.

• Quaternion symmetry is very common in many scientific and
engineering disciplines, especially those whose target involves
physical space.

• Much research has been afforded to real / complex linear
algebra algorithms to exploit this symmetry (Dongerra, et al,
1984; Shiozaki, 2018)

The quaternion algebra is [...] somewhat complicated, and
its computation cannot be easily mapped to highly opti-
mized linear algebra libraries such as BLAS and LAPACK.



Problem Statement

How can we leverage techniques such
as auto-tuning and microarchitechture

optimization to provide optimized
implementations of quaternion linear

algebra software?



This talk will attempt to answer (discuss) three questions:

• What are quaternions and why do we care?

• What possible use could I have for matrices of quaternions?

• What does all of this have to do with auto-tuning?
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Quaternions: Formally

Quaternions are defined as the set H of all q such that

q = q0e0 + q1e1 + q2e2 + q3e3, q0, q1, q2, q3 ∈ R

with

e0ej = eje0 = ej , j ∈ {0, 1, 2, 3},

eiej = −δije0 +
3∑

k=1

εkijek , i , j ∈ {1, 2, 3},



Quaternions: Formally

a, b, c ∈ R, c = ab, [a, b] = 0

w , v , z ∈ C, z = wv = w0v0 − w1v1 + (w0v1 + w1v0)i [w , v ] = 0

p, q, r ∈ H

r = pq =

(
p0q0 −

3∑
i=1

piqi

)
e0 +

3∑
k=1

p0qk + pkq0 +
3∑

i ,j=1

εkijp
iqj

 ek ,

[p, q] =
3∑

i ,j ,k=1

εkij
(
piqj − pjqi

)
ek 6= 0.



Quaternions: Formally

a, b, c ∈ R, c = ab, [a, b] = 0

w , v , z ∈ C, z = wv = w0v0 − w1v1 + (w0v1 + w1v0)i [w , v ] = 0

p, q, r ∈ H

r = pq =

(
p0q0 −

3∑
i=1

piqi

)
e0 +

3∑
k=1

p0qk + pkq0 +
3∑

i ,j=1

εkijp
iqj

 ek ,

[p, q] =
3∑

i ,j ,k=1

εkij
(
piqj − pjqi

)
ek 6= 0.



Quaternion Applications: Spacial Rotations

Topologically, the set of unit quaternions (ver-
sors)

V = {v ∈ H s.t. ||v || = 1}

is S3, and thus isomorphic to SU(2) which pro-
vides a double cover of SO(3) (rotations in R3).

We may describe spatial rotations in R3 via

r ∈ R3 7→ rH = r1e1 + r2e2 + r3e3

R(ê, θ) ∈ SO(3) 7→ ±v = ± exp

(
θ

2
(ê1e1 + ê2e2 + ê3e3)

)
such that

r ′ = R(ê, θ) r 7→ r ′H = vrHv−1



Quaternion Applications: Spacial Rotations

The SO(3) cover has found extensive exploitation in computer graphics /
vision

• (v0, v1, v2, v3) (4 real numbers) vs.

a b c
d e f
g h i

 (9 real numbers)

• v1, v2 ∈ H, v1v2 (16 FLOPs) vs R1,R2 ∈ SO(3), R1R2 (27 FLOPs)

• SLERP (Spherical Linear Interpolation)



Matrices of Quaternions

The algebra generated by {e0, e1, e2, e3} is identical to the algebra
generated by the Pauli matrices, thus H ∼= 〈SU(2)〉 ⊂M2(C),

e0 ↔ σ0, e1 ↔ iσ3, e2 ↔ iσ2, e3 ↔ iσ1,

with

σ0 =

[
1 0
0 1

]
, σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
.

Such that

q ↔ qC =

[
q0 + q1i q2 + q3i
−q2 + q3i q0 − q1i

]
=

[
q0 q1

−q1 q0

]
∈M2(C)



Matrices of Quaternions

The set of quaternion matrices, MN(H), is defined by

Q = Q0e0 + Q1e1 + Q2e2 + Q3e3, Q0,Q1,Q2,Q3 ∈MN(R).

Examining the M2(C) representation of a particular element

(Qµν)C = Q0
µνσ0 + iQ1

µνσ3 + iQ2
µνσ2 + iQ3

µνσ1.

which yields the Kronecker structure

QC = Q0 ⊗ σ0 + Q1 ⊗ iσ3 + Q2 ⊗ iσ2 + Q3 ⊗ iσ1

=

[
Q0 Q1

−Q1
Q

0

]
∈M2N(C),



Matrices of Quaternions

Q ∈MN(H)↔

[
Q0 Q1

−Q1
Q

0

]
∈M2N(C),

• Ubiquitous in quantum chemistry / nuclear physics
(time-reversal symmetry).

• Applications in image processing and machine learning
(quaternion PCA, etc).

Formal theory for quaternion linear algebra has been developed

• QR Algorithm

• Diagonalization, SVD

• LU, Cholesky, LDLH Factorizations



Performance Considerations

Table: Real floating point operations (FLOPs) comparison for elementary
arithmetic operations using H and M2(C) data structures.

Operation FLOPs in H FLOPs in M2(C)

Addition 4 8
Multiplication 16 32

p + q ←→ pC + qC,

pq ←→ pCqC,



Performance Considerations

Table: Real floating point operations (FLOPs) comparison for common
linear algebra operations using MN(H) and M2N(C) data structures.

Operation FLOPs in MN(H) FLOPs in M2N(C)

Addition 4N2 8N2

Multiplication 16N3 32N3

P + Q ←→ PC + QC,

PQ ←→ PCQC,



Performance Considerations

Quaternion arithmetic offers:

• 0.5x required FLOPs

• 0.5x memory footprint (4x / 8x floats)

• 2x arithmetic intensity (FLOPs / byte)

We should be using quaternion
arithmetic!



HAXX
• gh/wavefunction91/HAXX

• Optimized C++14 library for quaternion arithmetic

• HBLAS: Optimized quaternionic BLAS functionality

• HLAPACK: Optimized quaternionic LAPACK functionality (in
progress)

• Intrinsics + Assembly kernels

gh/wavefunction91/HAXX


Quaternion Matrix Multiplication

The most fundamental linear algebra operation is the general
matrix multiply (GEMM).

Great! Quaternion GEMM =⇒ HP Quaternion Linear
Algebra, Right?
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Quaternion Matrix Multiplication
The most fundamental linear algebra operation is the general
matrix multiply (GEMM).

Great! Quaternion GEMM =⇒ HP Quaternion Linear
Algebra, Right?
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Reference GEMM

Algorithm 0: Reference GEMM

Input : A ∈Mm,k(F),B ∈Mk,n(F),
C ∈Mm,n(F),
Scalars α, β ∈ F

Output: C = αAB + βC

for j = 1 : n do

1 Load Cj = C (:,j)
2 Cj = βCj

for l = 1 : k do

3 Load Al = A(:,l)
4 Cj = Cj + αAlBlj

end

5 Store Cj

end

Pros:

! Able to implement in an
afternoon

! Architecture agnostic

Cons:

% No caching of B

% Reloads all of A for each Cj

% For large m, k, A load boots Cj

from cache

% Relies on optimizing compiler
for SIMD, FMA, etc

% (Scalable) parallelism is
non-trivial

% Not tunable



High-Performance Matrix-Matrix Multiplication

A layered (Goto-style) algorithm significantly
improves performance

Pros:

! Caches parts of A,B for maximum
resuability

! Factors architecture specific µ-ops
into single micro-kernel

! Obvious avenue for SMP

! Tunable!

Cons:

% Significantly more complicated than
naive algorithm

% Requires allocation of auxiliary
memory

% Micro-kernel must be written for each
architecture

Van Zee, F.G., et al 2017, ACM TOMS 7:1-7:36.



High-Performance Quaternionic GEMM (HGEMM)

The optimized implementation of GEMM in HBLAS utilizes the
Goto algorithm. In essence, Goto’s original algorithm may be
extended to H by specialization of two sets routines:

• Micro-kernels which perform the H rank-1 update (assembly /
intrinsics)

• Efficient matrix packing routines (intrinsics)

and optimization of 3 caching parameters, mc , nc and kc for the
architecture of interest.
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Optimization of Cache Parameters

• OpenTuner: An open source Python framework for
auto-tuning

• Register blocks fixed (on AVX / AVX2), nr = mr = 2.

• Integer discretize mc , kc ∈ {2n}12n=3, nc ∈ {2n}16n=5

• Find {mc , nc , kc} which minimizes run time (maximizes
GFLOP/s)
• Average over 5 cold (cache invalidated) runs on select matrix

sizes (500,1k,2k,4k)

Possible to brute force otimimize, but not convienient!



Optimization of Cache Parameters
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Optimization of Cache Parameters
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AVX Optimized HGEMM Implementation
Intel Sandy Bridge (L1d: 32k, L1i: 32k, L2: 256k, L3: 20480k)

OpenTuner results:

• 10 tests x 10 runs (˜1 hour vs 10 hours brute force)

• mc = kc = 64

• nc = 1024
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Conclusions

• With instruction sets newer than AVX, high-performance
quaternionic linear algebra is possible and a viable alternative
to complex linear algebra for appropriate problems.

• Goto’s algorithm + auto-tuning drastically improves
performance
• Impractical with reference implementations.



Future Work

• Fill out HBLAS and HLAPACK coverage of the BLAS and
LAPACK standards.

• Package autotuner and tuning methodology to automate
optimization of caching parameters (+...) on new
architectures.

• Address parallelism (SMP + MPI)
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