Parallel Shift-Invert Spectrum Slicing for Symmetric Self-Consistent Eigenvalue Computation

David Williams-Young, Chao Yang Scalable Solvers Group Computational Research Division Lawrence Berkeley National Lab

SIAM Conference on Parallel Processing for Scientific Computing (PP20)

Electronic Structure Theory is the Study of Molecular Properties

Able to probe:

- Molecular structure
- Spectroscopies
- Reaction Kinetics / Mechanism
- Variable cost-to-accuracy ratio:
- Density Functional Theory (DFT): $O(N^3)$
- Perturbation Theory: $O(N^5)$
- Coupled Cluster $O(N^6)$

ERKELEY LAB

• We want to make these simulations faster!

Diagonalization is the Bottleneck for Large Scale DFT Calculations

$$F(C_o)C = SCE : O(N^3) \quad \leftrightarrow \quad \min_{C_o} \mathcal{E}(C_o)$$

U.S. DEPARTMENT OF

Office of

Science

Direct Diagonalization Methods Exhibit Poor Scaling

PDSYEV on Cori Haswell

N = 17,077 NB = 128

BERKELEY LAB

$$FC = SCE: O(N^3)$$

Direct Methods:

- (Sca)LAPACK / ELPA
- $N = O(10^5)$ using $O(10^3)$ CPUs
- ✓ "Exact"
- × Heavily communication bound
- x Unable to exploit sparsity
- X Not well suited for GPUs ($N \approx 20,000$)

Krylov Subspace Methods are Heavily Bound By Amdahl's Law

BERKELEY LAB

$$FC_o = SC_oE_o:O(N^3)$$

Krylov Subspace Methods:

- Lanczos / LOBPCG / GPLHR
- $N = O(10^7)$ using $O(10^4)$ CPUs
- \checkmark Targeted determination of C_o
- \checkmark Only requires $Y \leftarrow FX$
- X Requires direct method for projected problem
- X Many synchronization points → computational bottlenecks

We Must Exploit the Structure of the SCF Problem and Aspects of Modern Computing Architectures to Obtain Performance Improvements

Accuracy May be Amortized Over the SCF Procedure

• Accuracy in C_o is only needed to the same order as $\Delta C / \Delta E$

$$\left\| \left(I - C_o^{(i-1)} C_o^{(i-1),T} \right) C_o^{(i)} \right\|_2 < \left\| \left(I - C_o^{(i)} C_o^{(i),T} \right) C_o^{(i+1)} \right\|_2$$

 Smooth convergence indicates that C_o may be used to seed subsequent iterations

FLOPs are Cheap vs Communication

Reliance on accelerators (GPUs):

- IBM POWER9: 1 TFLOP/s
- Intel KNL: 3 TFLOP/s
- NVIDIA Tesla V100: 7.8 TFLOP/s
 - 46.8 TFLOP/s / Summit node (6x)

Cheap FLOPs \rightarrow Exposing Communication

- NVLink: peak (theoretical) 100 GB/s
- PCI-E: ~1-2 GB/s

- E.g. 10k x 10k DGEMM on V100 (PCI-E)
- DGEMM time = 2 sec

BERKELEY LAB

Communication (H2D + D2H) = 6 sec

The SISLICE Method

A Parallel Implementation of Shift-Invert Spectrum Slicing for the SCF Eigenvalue Problem

arXiv:1908.06043 (submitted to ACM TOMS)

Spectrum Slicing Partitions the Eigenspectrum into Independent Tasks

- Eigenvalues in each slice are to be determined "independently"
- Trades redundant FLOPs for less communication (ideally)

Spectral Filtering Provides a Mechanism for Spectrum Partitioning

Convergence Rate for $C_i \propto |f(\varepsilon_i)|$

Office of

Science

=:Ce

Shift-Invert Spectrum Slicing Trades Diagonalization for Redundant Linear System Solves

BERKELEY LAB

$$f(F) = (F - \sigma S)^{-1}S : O(N^3)$$

- Triangular Factorization (LU / LDLT) + Back Solve
- Lower prefactor / better strong scaling
- ✓ Able to exploit sparsity (SuperLU, symPACK, etc)
- ✓ Suitable for GPUs
- X Orders of magnitude more FLOPs
- X Implementations of shift-invert spectrum slicing have struggled with expressing <u>massive</u> concurrency
 - Sequential shift selection

The SISLICE Method Exploits the Convergent Properties of the SCF Procedure

Density of States Estimation Allows for Better Concurrency in Spectrum Slicing

EY LAB

 Eigenvalue distribution (DOS) may be approximated using a k-step Lanczos procedure

$$c(\lambda) = \sum_{l=1}^{k} d_l \exp(-\alpha_l (\lambda - \theta_l)^2)$$

- Shift are selected prior to shift-invert iterations
 - <u>All sets of shift-invert may be</u> done concurrently!

Matrix Inertia Enables Validation of Eigenpairs in Overlapping Spectral Regions

- Valid eigenpair approximations
- Rejected eigenpair approximations
- Possible eigenpair approximations based on σ_{j-1} and σ_{j+2}

 $\sigma_j \qquad \sigma_{j+1}$

SYTRF: $F - \sigma_j S = L_j D_j L_j^T$

BERKELEY LAB

- Eigenvalue count between σ_j and σ_{j+1} : $n_-(D_{j+1}) n_-(D_j)$
- Keep eigenvalue approximations with smallest residual

DBWY, et al. arXiv:1908.06043

Eigenvalue Clustering Enables Systematic Improvements in Shift Placement Throughout the SCF Procedure

- Approximate eigenvalues are clustered (k-means) at each SCF iteration
- Optimal shift selection is amortized over the SCF procedure

BERKELEY LAB

DBWY, et al. arXiv:1908.06043

Slice Migration and Validation Schemes Drastically Reduce Communication Volume

17

ERKELEY LAB

- Eigenvalue validation and shift selection methods only require scalar quantities:
 - Eigenvalue approximations
 - Residual norms
 - Matrix inertia

- Can be replicated on each rank with no subsequent communication
 - Synchronization latency may be hidden with RMA

DBWY, et al. arXiv:1908.06043

Numerical Experiments: SiOSi₅

- RPBE0 / 6-31G(d) All electron simulation
- N = 1109
- SCF convergence is sensitive to accuracy

Eigenspectrum of SiOSi₅ Exhibits Multiple Distribution Regimes

SISLICE Exhibits Proper Convergence Behaviour in SCF

BERKELEY LAB

SISLICE Exhibits Linear Strong Scaling

Si₁₀H₁₆ (UF Sparse Matrix Collection) • N = 17077

- NNZ = 87592 (99.7% zeros)
- SuperLU for distributed LU factorization
- NB = 128 for ScaLAPACK/ELPA

2.7x speedup

The Shift-Invert Subspace Iteration Performs Well on GPUs

The Shift-Invert Subspace Iteration Performs Well on GPUs

BERKELEY LAB

Science

Conclusions

DOS estimation enables the expression of additional concurrency over other spectrum slicing implementations

Clustering allows for tracking of the dynamic eigenvalues throughout the SCF

The SISLICE method offers a robust and high-performance avenue for electronic structure simulations

Acknowledgements

The development of SISLICE has been supported by the U.S. Department of Energy:

- SciDAC-4
- Exascale Computing Project (NWChemEx 17-SC-20-SC)

Calculations were performed using DOE computing facilities:

- Cori (NERSC)
- Summit (OLCF)

